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Samenvatting
Dit document geeft oplossingen bĳ V. I. Arnold’s opgavenboek
Opgaven voor kinderen van 5 tot 15.

We hebben telkens gezocht naar eenvoudige, elegante bewĳzen
en hebben deze in een gebalde stĳl opgeschreven.
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Opmerkingen bij de oplossingen
Sommige bewĳzen lĳken buiten bereik van de doelgroep van kinderen
van 5 tot 15 te liggen, met name bĳ de formule van Cayley (oplos-
sing 46), het Bazel-probleem (opgave 51) en de Equidistributiestelling
van Weyl (gebruikt in oplossing 71). In die gevallen verwĳzen we naar
de literatuur.

In de volgende twee vermeldenswaardige boeken zĳn van een aantal
opgaven oplossingen te vinden:
– V. I. Arnold, Mathematical understanding of nature: essays on
amazing physical phenomena and their understanding by
mathematicians, American Mathematical Society.

– M. Aigner, G.M. Ziegler, Proofs from THE BOOK, Springer.

3





Oplossingen
1. De kopeke die Misha tekort kwam, kon Masha blĳkbaar niet
bĳleggen. Masha had dus geen enkele kopeke! Gegeven is dat zĳ er
zeven tekort kwam. Het boek kostte dus zeven kopeken.

2. Van de 10 kopeken die de fles en de kurk samen kosten, vormen 9
het prĳsverschil tussen kurk en fles. De resterende kopeke valt uiteen
in twee helften: de prĳs van de kurk en een deel van de prĳs van de
fles. De fles alleen kost dus 91/2 kopeken.

3. Er staat in feite dat een halve baksteen een pond weegt. De hele
steen weegt dus twee pond.

4. Na het over en weer overgieten zĳn de vloeistoffen in vat en glas
mengsels geworden, maar vat en glas zĳn elk wel weer precies zo vol
als aan het begin. Dus bevatten ze gelĳke volumes vreemde vloeistof.

5. Laat t de tĳdsduur tussen zonsopkomst en het middaguur (12 uur)
aangeven. De afstand die de eerste dame in t uur aflegde, legde de
tweede dame in 21 − 12 = 9 uur af, dus de eerste dame was 9

t keer
zo snel als de tweede dame. De afstand die de tweede dame in t uur
aflegde, legde de eerste in 16 − 12 = 4 uur af, dus de eerste was
t
4 keer zo snel als de tweede. De twee breuken staan voor dezelfde
snelheidsverhouding: 9

t = t
4 , dus t = 6. De zonsopkomst was dus om

12− t = 12− 6 = 6 uur.

6. De Amerikaanse scholieren gebruikten zonder verder na te denken
de formule “de oppervlakte van een driehoek is gelĳk aan de basis maal
de halve hoogte”: 10 · 1

2 · 6 = 30.
De Russische kinderen daarentegen begrepen dat de driehoek uit

de opgave helemaal niet kan bestaan. Van welke rechthoekige driehoek
dan ook die op zĳn schuine zĳde met lengte 10 als basis ligt, is de
hoogte h hoogstens 5 en nooit 6. De loodlĳn uit de top verdeelt de
driehoek in twee rechthoekige driehoeken met rechthoekszĳden h en
l, respectievelĳk h en 10 − l. Driemaal de stelling van Pythagoras
toepassen levert h =

√
l · (10− l), met maximum h = 5 voor l = 5

(de top ligt op de halve cirkel met de basis als diameter).
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7. Vasya niet meegerekend, is het aantal meisjes in het gezin 2 groter
dan het aantal (nul of meer) jongens. Vasya is zelf een jongen, dus in
het hele gezin is er 1 meisje meer dan dat er jongens zĳn.

8. De oppervlakte van de bloem verdubbelt zich elke dag. Op 1 juli
is de hele vĳver bedekt, dus de helft was bedekt op de dag ervoor, op
30 juni.

9. De boer zet eerst de geit over, vaart terug, zet vervolgens de wolf
over, neemt de geit mee terug, brengt de kool over, vaart weer terug,
en neemt ten slotte de geit nog een keer mee naar de overkant.

10. De slak stĳgt 3−2 = 1 cm per etmaal. Aan het begin van dag 998
zit hĳ op een hoogte van 9m en 97 cm. Gedurende die dag klimt hĳ
3 cm tot 10m hoogte en bereikt hĳ de top van de paal met het hapje.

11. De voor de hand liggende oplossing voor de plek van de tent is
de noordpool. De beer was dus een ĳsbeer, dus wit.

Daarnaast zĳn er oneindig veel oplossingen in de buurt van de
zuidpool. Beschouw daar breedtecirkels Cn met omtrek 10 km/n, voor
n = 1, 2, . . . . Als de tent zich bevindt op een willekeurig punt op de
breedtecirkel 10 km ten noorden van zo’n cirkel Cn (gemeten over het
aardoppervlak), dan kan de opgegeven weg worden afgelegd. De 10 km
oostwaarts bestaat uit het n keer doorlopen van Cn.

12. Het tĳ wordt vooral bepaald door de zwaartekracht van de maan.
De maan draait in ongeveer 30 dagen om de aarde, met de draaiing
van de aarde mee. Omdat de maan vooruitloopt op de aarde, heeft
een bepaalde plaats op aarde de volgende dag pas ongeveer 1/30 dag
oftewel 48 minuten later weer dezelfde positie ten opzichte van de
maan. Het antwoord is dus rond 12.48 uur.

13. We nemen aan dat de twee boeken op volgorde staan, dus dat
het tweede deel rechts van het eerste deel staat. Bekĳk of teken deze
situatie! Je ziet dat er zich tussen de eerste bladzĳde van het eerste
deel en de laatste bladzĳde van het tweede deel alleen de voorkaft van
het eerste deel en de achterkaft van het tweede deel bevinden. De twee
kaften zĳn samen 4mm dik.
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14. Er zĳn vele oplossingen. De figuur toont een mogelĳk zĳaanzicht
van een lichaam dat het gevraagde voor- en bovenaanzicht heeft.

15. ???

16. We beschouwen een trap van n+1, n ⩾ 1, gestapelde staven van
lengte 1, genummerd van boven naar beneden: k = 1 is de hoogste
staaf en k = n + 1 de laagste. Elke staaf k, 1 ⩽ k ⩽ n, heeft een
overhang xk ⩾ 0 ten opzichte van de onderliggende staaf k + 1.

Met zk, 1 ⩽ k ⩽ n, geven we de horizontale afstand aan tussen het
zwaartepunt van de bovenste k staven en het midden van staaf k+ 1:
z1 = x1 en zk = (xk + (k − 1)(xk + zk−1))/k = xk +

(
k−1
k

)
zk−1 voor

1 < k ⩽ n.
De voorwaarde voor stabiliteit van de hele stapel is zk ⩽ 1

2 voor
alle 1 ⩽ k ⩽ n. We zoeken de grens op: zk = 1

2 voor alle 1 ⩽ k ⩽ n.
Dan volgt xk = 1

2

(
1− k−1

k

)
= 1

2k , 1 ⩽ k ⩽ n. De totale overhang is:

x =
n∑

k=1

xk = 1
2

n∑
k=1

1
k .

Het is bekend dat de harmonische reeks
∞∑
k=1

1
k divergeert, dus x kan

willekeurig groot zĳn door n groot genoeg te nemen en xk = 1
2k .

17. De onderlinge afstand van de twee fietsers is aanvankelĳk 40 km
en neemt af met 10 + 15 = 25 km/uur. Ze treffen elkaar dus na 40/25 =
1,6 uur. In die tĳd legt de vlieg 100 · 1,6 = 160 km af.

18. Dat is niet mogelĳk. Neem 31 dominostenen met een witte en
een zwarte helft. Deze kunnen op een schaakbord altĳd kleur op kleur
worden gelegd (waar dat niet het geval is, is dat op te lossen door
een steen andersom te leggen), en laten één wit veld en één zwart
veld onbedekt. Tegenoverliggende hoekvelden op dezelfde diagonaal
hebben echter dezelfde kleur.
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19. De rups moet hoe dan ook over twee zĳvlakken van de kubus
kruipen. Dat kan via zes combinaties van twee zĳvlakken. Worden
de twee vlakken in gedachten plat neergelegd als een rechthoek, dan
komen begin- en eindpunt van de weg overeen met schuin tegenover
elkaar liggende hoekpunten. De kortste weg daartussen – een rechte
lĳn – is een diagonaal van de rechthoek (met lengte

√
5 maal de lengte

van de ribbe van de kubus). De overeenkomende weg op de kubus
kruist een ribbe in het midden.

20. Vul het 3 liter vat volledig met water en giet het leeg in het
5 liter vat. Vul het 3 liter vat nogmaals volledig en giet daaruit zoveel
in het 5 liter vat tot dat vol is. Het restant in het 3 liter vat is één
liter.

21. Bĳ elk hoofd hoort minstens één paar benen, dus bĳ vĳf hoofden
horen minstens tien benen. Dan zĳn er nog twee paar benen over, dus
er zĳn twee honden. De overige hoofden en benen zĳn goed voor drie
mensen.

22. Deze uitspraak staat bekend als de Stelling van Napoleon. We
geven een aanschouwelĳk bewĳs. We draaien één van de gelĳkzĳdige
driehoeken om elk van de centra van de twee andere, over 2π/3 radialen,
in tegengestelde richtingen zodat de beelden samenvallen. De grĳze
driehoeken in de figuur zĳn dan gelĳkbenig, met hoeken van π/6 en
2π/3 radialen, en even groot. Daaruit volgt dat de driehoek die wordt
bepaald door de centra ∗, hoeken van π/3 radialen heeft en dus gelĳk-
zĳdig is.
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23. Omdat een kubus zes zĳvlakken heeft, zĳn zevenhoeken niet
mogelĳk. De figuur in de opgave toont een willekeurige driehoek. Het
is eenvoudig in te zien dat ook gelĳkbenige en gelĳkzĳdige driehoeken
mogelĳk zĳn. Vierhoeken, rechthoeken, een vierkant, vĳfhoeken en
zeshoeken zĳn ook mogelĳk. Een zeshoek is regelmatig als het platte
vlak de ribben in hun midden snĳdt. Een regelmatige vĳfhoek is niet
mogelĳk.

24. Neem zonder verlies van algemeenheid de kubus met de oor-
sprong (0, 0, 0) als centrum en de acht hoekpunten (±l,±l,±l) op
afstand 1 van de oorsprong, dus l = 1/

√
3. Beschouw lĳnen door

de oorsprong met hun richtingen bepaald door punten (e1, e2, e3) op
afstand 1 van de oorsprong, dus

3∑
j=1

ej
2 = 1. Van de hoeken αn, n =

1, . . . , 8, tussen een bepaalde lĳn en de lĳnstukken van de oorsprong
naar de hoekpunten van de kubus zĳn cosαn =

3∑
j=1

±l · ej , volgens

de formule voor het inwendig product. De afstanden tussen de hoek-
punten en deze lĳn bedragen sinαn. De som van hun kwadraten is:
8∑

n=1
sin2 αn =

8∑
n=1

(1− cos2 αn) = 8−
∑

(±l,±l,±l)

(
3∑

j=1

±l · ej

)2

= 8− 8l2
3∑

j=1

ej
2 −

∑
(±l,±l,±l)

3∑
j,k=1;j ̸=k

±l · ej · ±l · ek = 16/3

(de 48 termen van de laatste som vallen tegen elkaar weg). Deze
uitkomst is onafhankelĳk van (e1, e2, e3), dus voor alle lĳnen gelĳk.

9



25. Het blĳkt dat de snĳkromme een ellips is met A en B als brand-
punten. Voor elk punt op een ellips is de som van diens afstanden tot
de brandpunten gelĳk.

Vanaf een willekeurig punt buiten een bol is de afstand langs elke
raaklĳn aan de bol tot het raakpunt gelĳk. Dit passen we toe op elk
punt van de snĳkromme en beide bollen van Dandelin, met lĳnstukken
naar de raakpunten A en B, en lĳnstukken langs een beschrĳvende
lĳn van de kegel naar elk van beide cirkels waar de bollen de kegel
raken: in de figuur zĳn de groene lĳnstukken even lang en zĳn de rode
lĳnstukken even lang.

De som van de lengten van deze lĳnstukken, het groene en het
rode lĳnstuk (beschouw deze op de beschrĳvende lĳn van de kegel), is
voor alle punten op de snĳkromme gelĳk, omdat de genoemde cirkels
gecentreerd zĳn op de as van de kegel en in evenwĳdige vlakken
loodrecht op deze as liggen.

Dus op de snĳkromme is de som van de afstanden tot A en B
constant, dus de kromme is een ellips met brandpunten A en B.

A
B

Met dank aan: DandelinSpheres, via Wikimedia Commons.
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26. Beschouw een smalle strook op het aardoppervlak rond breedte-
graad ϕ.

Is R de straal van de aarde, dan heeft de betreffende breedtecirkel
straal R cosϕ. Dus de verhouding van de omtrek van de projectie van
de breedtecirkel op de cilindermantel en de omtrek van de breedte-
cirkel zelf is 1/cosϕ.

De raaklĳn aan elke meridiaan in het snĳpunt met de betreffende
breedtecirkel maakt een hoek ϕ met de lĳn door dit punt evenwĳdig
aan de cilinderas. Dus de verhouding van de breedte van de projectie
van het strookje op de cilindermantel en de breedte van het strookje
zelf is cosϕ.

Samengevat is deze projectie een oppervlaktegetrouwe afbeelding:
cosϕ · 1/cosϕ = 1. In het bĳzonder heeft de projectie van Frankrĳk
dezelfde oppervlakte als het land zelf.

27. Met het binomium van Newton kunnen we schrĳven:

2p = (1 + 1)
p
=

p∑
k=0

(
p
k

)
1p−k 1k =

p∑
k=0

p!
k! (p−k)! .

Dit kan worden uitgewerkt tot:

2p = 2 + 2p
(p−1)/2∑
k=1

(p−1)!
k! (p−k)! .

Halveren levert de gezochte betrekking:

2p−1 = p

(
(p−1)/2∑
k=1

(p−1)!
k! (p−k)!

)
+ 1 = p a+ 1, met a geheel.

In deze afleiding zĳn twee punten doorslaggevend. Omdat p oneven
is, is p−1

2 geheel. Omdat p priem is, zĳn (p−1)!
k! (p−k)! geheel (binomiaal-

coëfficiënten zĳn geheel, in
(
p
k

)
= p!

k! (p−k)! = p·(p−1)·...·(p−k+1)
k·(k−1)·...·1 is p

wel een priemdeler van de teller maar niet van de noemer, dus zĳn
1
p

(
p
k

)
= (p−1)!

k! (p−k)! ook geheel).
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28. Deze opgave staat bekend als het naaldprobleem van Buffon.
Laat l de waarde zĳn van de regelafstand en de naaldlengte; de

precieze waarde, hier 10, maakt niet uit. Twee parameters bepalen
de positie van de gevallen naald ten opzichte van de lĳnen op het
papier: de hoek ϕ, 0 ⩽ ϕ ⩽ π

2 , tussen de richting van de naald en
de richting loodrecht op de lĳnen, en de afstand d, 0 ⩽ d ⩽ l

2 , van
het midden van de naald tot de dichtstbĳzĳnde lĳn. De projectie
van de naald loodrecht op de lĳnen heeft lengte l cosϕ. De naald
kruist de dichtstbĳzĳnde lĳn als d ⩽ l

2 cosϕ. De (ϕ, d) rechthoek
heeft oppervlakte π

2 · l
2 = πl

4 . Het deel d ⩽ l
2 cosϕ heeft oppervlakte

l
2

∫ π
2

0
cosϕdϕ = l

2 . De kans dat de naald een lĳn kruist is gelĳk aan
de verhouding van de oppervlakten: l

2/
πl
4 = 2

π .
Laat nu de naald licht gekromd zĳn met a·l, 0 � a < 1, de afstand

tussen de uiteinden van de naald. De kans dat de naald een lĳn kruist
is nu: a·l

2 /πl
4 = 2a

π .

29. Voor convexe veelvlakken met H hoekpunten, R ribben en Z zĳ-
vlakken geldt de formule van Euler: H −R+ Z = 2.

Wanneer alle zĳvlakken driehoeken zĳn, dan horen er bĳ elk zĳvlak
drie ribben en bĳ elke ribbe twee zĳvlakken (voor de hoekpunten
kunnen we niet soortgelĳke uitspraken doen). Het is niet zo dat het
veelvlak drie keer zoveel ribben als zĳvlakken heeft of twee keer zoveel
zĳvlakken als ribben, omdat er in die tellingen dubbelingen zitten.
De genoemde verhoudingen gelden wel voor het aantal (ongeordende)
paren van zĳvlak en ribbe. Dit aantal is gelĳk aan 3Z en ook gelĳk aan
2R, dus 3Z = 2R. In dit geval luidt de formule van Euler: Z = 2H−4.
Zie in de figuur in de opgave de tetraëder: H = 4, R = 6, Z = 4,
octaëder: H = 6, R = 12, Z = 8, icosaëder: H = 12, R = 30, Z = 20.
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30. In de figuur is een kubus in een dodecaëder getekend. De dode-
caëder heeft 12 zĳvlakken en de kubus 12 ribben. Van elk zĳvlak van
de dodecaëder valt één van de diagonalen samen met een ribbe van
de kubus. Omdat elk zĳvlak van de dodecaëder vĳf diagonalen heeft,
zĳn er vĳf van zulke kubussen te onderkennen.

Met dank aan: Tomruen, CC BY-SA 4.0, via Wikimedia Commons.

De figuur maakt ook inzichtelĳk dat een dodecaëder kan worden
gevormd door op elk zĳvlak van een kubus een dakje te plaatsen.

31. De doorsnede van de twee tetraëders is een octaëder, waarvan
de hoekpunten op de middens van de zĳvlakken van de kubus liggen.

Met dank aan: Birgit Lachner, CC BY-SA 3.0, via Wikimedia Commons.

Een octaëder bestaat uit twee piramides. De inhoud van een (wil-
lekeurige) piramide is gelĳk aan 1

3 maal de oppervlakte van het grond-
vlak maal de hoogte. Heeft de kubus inhoud 1, dan heeft elk van beide
piramides inhoud 1

3 · 1
2 · 1

2 = 1
12 , dus de octaëder inhoud 1

6 .
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31bis. De doorsnede is een (onregelmatige) zeshoek, waarvan de drie
gegeven punten hoekpunten zĳn en waarvan tegenoverliggende zĳden
evenwĳdig zĳn. De figuur toont een ‘constructie zonder woorden’ om
eerst één van de drie onbekende hoekpunten te bepalen en daarna de
andere twee.

32. Een regelmatig veelvlak heeft Z zĳvlakken (Z = 4, 6, 8, 12, 20)
en per zĳvlak N zĳden (of hoekpunten) (resp. N = 3, 4, 3, 5, 3). Een
bepaald zĳvlak kan door Z draaiingen worden overgevoerd in alle
zĳvlakken (met inbegrip van de identiteit die het lichaam ongemoeid
laat) en vervolgens gedraaid in N standen, waarna het lichaam weer
dezelfde ruimte inneemt als aan het begin. Dit zĳn ZN draaiingen.
Daarbovenop kan elk van deze uitkomsten binnenstebuiten worden
gekeerd. Dit zĳn ZN spiegelingen. Dus samen 2ZN symmetrieën.

Analoge betogen zĳn er met H hoekpunten (H = 4, 8, 6, 20, 12)
en M ribben (of zĳvlakken) per hoekpunt (resp. M = 3, 3, 4, 3, 5) en
dan 2HM symmetrieën, of met R ribben (R = 6, 12, 12, 30, 30) en
2 zĳvlakken (of hoekpunten) per ribbe en dan 4R symmetrieën.

Dus een tetraëder heeft 24 symmetrieën, een kubus en een octaëder
hebben er 48, en een icosaëder en een dodecaëder 120, waarvan telkens
de helft draaiingen zĳn en de helft spiegelingen.

14



33. Kies, zonder verlies van algemeenheid, één van de zes kleuren
voor het bovenvlak van de kubus. Voor het ondervlak zĳn er dan 5
mogelĳke kleuren. Kies vervolgens, weer zonder verlies van algemeen-
heid, één van de overgebleven vier kleuren voor één van de vier zĳ-
vlakken. Voor het zĳvlak ertegenover zĳn er dan 3 mogelĳke kleuren.
Voor het verdelen van de twee overgebleven kleuren over de twee
overgebleven zĳvlakken zĳn er 2 mogelĳkheden. Het totaal aantal
mogelĳkheden is 5 · 3 · 2 = 30.

34. Het aantal mogelĳkheden om n voorwerpen te rangschikken is
n-faculteit:

n! = n · (n− 1) · (n− 2) · . . . · 2 · 1 =
n∏

k=1

k.

Voorbeelden: 4! = 1 · 2 · 3 · 4 = 24, 5! = 1 · 2 · 3 · 4 · 5 = 120, 6! = 5! · 6 =
120 · 6 = 720, 10! = Π10

k=1k = 3628 800.

35. Elke draaiing van de kubus geeft een permutatie van zĳn vier
lichaamsdiagonalen. De vraag is of ze allemaal verschillend zĳn. Elke
permutatie kan maar op één manier in zichzelf overgaan (naast de
identieke afbeelding, die alles op zĳn plaats laat), namelĳk door een
puntspiegeling in het centrum van de kubus. De puntspiegeling is niet
door draaiingen te verwezenlĳken. Er zĳn dus evenveel permutaties als
draaiingen, en dat zĳn er 24 (de identieke afbeelding meegerekend);
Mark Ronan legt dit heel mooi uit in The Rotations of a Cube. Zie
ook oplossing 32.

36. Het genoemde verschil is een veelvoud van 3. Voor n willekeurige
gehele getallen a1, a2, . . . , an bestaat er een geheel getal bn zodat:

(a1 + a2 + . . .+ an)
3 − (a1

3 + a2
3 + . . .+ an

3) = 3bn.

Bewĳs via volledige inductie:
– Voor n = 1 is b1 = 0.
– Vervolgens nemen we de stap van n naar n+ 1:
(a1 + . . .+ an+1)

3 − (a1
3 + . . .+ an+1

3)

= (a1 + . . .+ an)
3
+3(a1 + . . .+ an)

2
an+1+3(a1+ . . .+an)an+1

2+
an+1

3 − (a1
3 + . . .+ an

3)− an+1
3

= 3
(
bn + (a1 + . . .+ an)

2
an+1 + (a1 + . . .+ an)an+1

2
)
=: 3bn+1.

De aldus gedefinieerde bn+1 is geheel wanneer bn geheel is.
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37. Analoog aan oplossing 36 (gebruik de driehoek van Pascal):
(a1 + a2)

5
= a1

5 + a2
5 + 5(a1

4a2 + 2a1
3a2

2 + 2a1
2a2

3 + a1a2
4), en

(a1 + a2)
7
= a1

7 + a2
7 + 7(a1

6a2 + 3a1
5a2

2 + 5a1
4a2

3 + 5a1
3a2

4 +
3a1

2a2
5 + a1a2

6).

38. De termen van de opgegeven som hebben allemaal dezelfde vorm:

1

n · (n+ 1)
=

1

n
− 1

n+ 1
.

Zo uitgeschreven vallen alle termen behalve de eerste en de laatste
tegen elkaar weg (dit heet een telescopische som):

1

1 · 2
+

1

2 · 3
+

1

3 · 4
+ · · ·+ 1

99 · 100

=
1

1
− 1

2
+

1

2
− 1

3
+

1

3
− 1

4
+ · · ·+ 1

99
− 1

100
= 1− 1

100
=

99

100
.

(Merk op dat 1 als benadering net iets meer dan 1% afwĳkt van de
exacte waarde.)

39. Deze uitspraak staat bekend als de Stelling van Wallace-Bolyai-
Gerwien. In de literatuur tref je bewĳzen aan die op onderdelen uiteen-
lopen.

In de volgende stappen delen we eerst een veelhoek op in driehoe-
ken, zetten we vervolgens elke driehoek om in een rechthoek en daarna
elke rechthoek in een vierkant, en voegen we ten slotte alle vierkanten
samen tot één vierkant:

1. Deel de veelhoek op in driehoeken. Dit is altĳd mogelĳk door
een verticale lĳn door elk hoekpunt te trekken; de veelhoek valt
zo uiteen in trapezia en driehoeken, en elk trapezium kan langs
een diagonaal worden gesplitst in twee driehoeken.
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2. Verdeel elke driehoek zodanig dat de stukken kunnen worden
herschikt tot een rechthoek met dezelfde oppervlakte.

3. De stap van rechthoek naar vierkant werkt alleen voor rechthoe-
ken waarvan de lange zĳde hoogstens viermaal zo lang is als
de korte (oftewel hoogstens tweemaal zo lang als de wortel uit
de oppervlakte). Door vaak genoeg te halveren en te stapelen
kan elke rechthoek worden omgezet in een andere die hieraan
voldoet, met behoud van oppervlakte.

4. Zet elke rechthoek om in een vierkant met dezelfde oppervlakte.

5. Voeg alle vierkanten stap voor stap, telkens per twee, samen tot
één enkel vierkant, met behoud van oppervlakte.

Bovenstaande stappen uitgevoerd voor twee verschillende veelhoe-
ken van gelĳke oppervlakte geven twee verschillende opdelingen van
een vierkant dat dezelfde oppervlakte heeft als de veelhoeken. Omge-
keerd kunnen de stukken van een even groot vierkant dat volgens beide
manieren is opgedeeld, worden herschikt tot elk van beide veelhoeken!
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40. Kopieën van het parallellogram in stroken tegen elkaar aan ge-
legd, met hun hoekpunten op de roosterpunten van het vel ruitjes-
papier, betegelen het vlak: alles is bedekt en alleen de zĳden vallen
over elkaar heen. Immers, stel dat punten in de binnengebieden samen-
vallen, dan valt er ook een hoekpunt van het ene parallellogram op
een zĳde of in het binnengebied van het andere, in tegenspraak met
het uitgangspunt.

Elk roosterpunt van het vel ruitjespapier is hoekpunt van vier
parallellogrammen, en natuurlĳk ook van vier ruitjes. Dus komen
in elk roosterpunt vier ruitjes en vier parallellogrammen samen. Per
willekeurig deel van het vlak zĳn er dus evenveel parallellogrammen
als ruitjes. Hieruit volgt dat het parallellogram dezelfde oppervlakte
heeft als een ruitje.

41. Een driehoek met de hoekpunten op roosterpunten van het vel
ruitjespapier en geen roosterpunten op de zĳden of in het binnengebied,
heeft de oppervlakte van 1/2 ruitje. Immers, zo’n driehoek samen-
gevoegd met een omgedraaide kopie is een parallellogram zoals be-
schouwd in opgave 40.

Een parallellogram met a roosterpunten in het binnengebied en b
op de zĳden, kan worden opgedeeld in zeg n van zulke driehoeken, en
heeft dan oppervlakte n/2.

De som van al hun hoeken is πn radialen.
Anderzĳds bedraagt deze som 2πa + πb + 2α + 2(π − α), waarin

0 < α ⩽ π/2 de scherpe hoek van het parallellogram is, of een rechte
hoek bĳ een rechthoek. Hierin zĳn opgeteld de hoeken rond de a
inwendige roosterpunten, de gestrekte hoeken gevormd door de hoeken
die samenkomen bĳ de b roosterpunten op de zĳden, en de vier hoeken
van het parallellogram.

Er volgt n/2 = a+b/2+1 voor de oppervlakte van het parallellogram.
Dit is een speciaal geval van de Stelling van Pick.

42. De afleiding voor een parallellepipedum in de ruimte, met a
roosterpunten in het inwendige, b op de zĳvlakken en c op de ribben, is
analoog aan oplossingen 40 en 41. Uit de vergelĳking voor de ruimte-
hoeken volgt voor de inhoud de uitdrukking a+ b/2 + c/4 + 1.
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43. Een gemeenschappelĳke deler van twee gehele getallen is ook
een deler van hun verschil. In de Fibonacci-rĳ is elk getal het verschil
van zĳn twee directe opvolgers, dus een gemene deler van twee opeen-
volgende getallen is ook een deler van hun directe voorganger. Terug-
gaand in de Fibonacci-rĳ volgt dus dat een gemene deler van an+2

en an+1 ook een gemene deler is van an+1 en an, en uiteindelĳk ook
een deler is van a1 = 1. Dus twee opeenvolgende Fibonacci-getallen
hebben geen andere deler gemeen dan 1. De grootste gemene deler
van de Fibonacci-getallen a100 en a99 is dus 1.

44. We stellen voor c(n) een recursieve betrekking op. Nummer de
hoekpunten van de convexe n-hoek, n ⩾ 3, opvolgend als k = 1, . . . , n.
Neem de zĳde tussen de twee naast elkaar liggende hoekpunten 1 en
n als basis van een driehoek en laat de top ervan lopen over de andere
n− 2 hoekpunten k = 2, . . . , n− 1. Deze driehoek verdeelt de n-hoek
in drieën: de driehoek zelf, een k-hoek en een (n + 1 − k)-hoek. Zo
leiden we af:

c(n) =
n−1∑
k=2

c(k) · c(n+ 1− k), c(2) = 1.

Hieruit volgt: c(3) = 1, c(4) = 2, c(5) = 5, c(6) = 14, c(7) = 42,
c(8) = 132, c(9) = 429, c(10) = 1430.
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45. Bĳ n− 1, n ⩾ 2, ploegen en de regel dat verliezers zonder meer
afvallen, volstaat een schema met n−2 partĳen om tot een winnaar te
komen. Er kan op 2n− 3 manieren een nde ploeg worden toegevoegd
aan een bestaand schema voor n− 1 ploegen:
– De nde ploeg speelt tegen de winnaar van de n− 1 ploegen. Dit is

1 mogelĳkheid.
– De nde ploeg speelt tegen één van beide ploegen uit één van de
n − 2 partĳen uit het schema voor n − 1 ploegen, en de winnaar
daarvan speelt tegen de andere ploeg uit die ene partĳ. Hiervoor
zĳn er 2(n− 2) mogelĳkheden.

Dus voor het aantal mogelĳke schema’s s(n) voor n ⩾ 3 ploegen geldt
recursief:

s(n) = (2n− 3) · s(n− 1), s(2) = 1.

Hieruit volgt dat s(n) het product is van de eerste n−1 oneven getallen
1, 3, 5, 7, . . . , 2n− 3:

s(n) =
n∏

k=2

(2k − 3) =
n−1∏
k=1

(2k − 1).

Voor 9 partĳen voor 10 ploegen zĳn er s(10) = 1 · 3 · 5 · . . . · 17 =
34 459 425 verschillende schema’s.

46. Het aantal bomen van lĳnstukken tussen n genummerde punten
is nn−2 en staat bekend als de formule van Cayley. Er bestaan vele
bewĳzen, maar geen ervan is eenvoudig en kort. We verwĳzen naar de
literatuur.
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47. In een ‘slang’ van de getallen 1, . . . , n, n ⩾ 2, zĳn de getallen
op de oneven plaatsen relatieve minima en de getallen op de even
plaatsen relatieve maxima. Het absolute maximum n moet dus op een
even plaats staan, zeg x2j = n voor een zekere gehele 1 ⩽ j ⩽ n/2 (met
dien verstande dat n/2 niet geheel is voor oneven n). De overgebleven
getallen 1, . . . , n − 1 kunnen op

(
n−1
2j−1

)
=
(
n−1
n−2j

)
manieren worden

verdeeld over de twee delen aan weerszĳden van positie 2j, die immers
lengten 2j − 1 en n − 2j hebben. Zo redenerend kunnen we voor het
aantal slangen s(n) van lengte n de volgende recursieve betrekking
opstellen:

s(n) =
∑

1⩽j⩽n/2
(n−1)!

(n−2j)! (2j−1)! · s(n− 2j) · s(2j − 1), s(0) = s(1) = 1.

Hieruit volgt: s(2) = 1, s(3) = 2, s(4) = 5, s(5) = 16, s(6) = 61,
s(7) = 272, s(8) = 1385, s(9) = 7936, s(10) = 50521.
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48. Beschouw de volgende functie uitgedrukt als reeks:

f(x) =
∞∑
k=1

s2k−1
x2k−1

(2k−1)! .

We berekenen de afgeleide en, met gebruik van de uitdrukking voor
sn uit oplossing 47 voor n = 2k−1, het kwadraat – hierbĳ is het zaak
nauwkeurig met de termen van de reeks te rekenen:

f ′(x) =
∞∑
k=1

s2k−1
x2k−2

(2k−2)! = 1 +
∞∑
k=2

s2k−1

(2k−2)! x
2k−2,

f2(x) =
∞∑
i=1

∞∑
j=1

s2i−1 s2j−1

(2i−1)! (2j−1)! x
2(i+j)−2

=
∞∑
k=2

( ∑
i+j=k, i⩾1, j⩾1

s2i−1 s2j−1

(2i−1)! (2j−1)!

)
x2k−2

=
∞∑
k=2

( ∑
1⩽j<k

s2k−1−2j s2j−1

(2k−1−2j)! (2j−1)!

)
x2k−2

=
∞∑
k=2

s2k−1

(2k−2)! x
2k−2.

We zien dat voor f(x) de differentiaalvergelĳking f ′(x) = 1 + f2(x)
opgaat, met beginvoorwaarde f(0) = 0.

De tangensfunctie voldoet hieraan: (tanx)′ = (sinx cos−1 x)′ =
(cos2 x+ sin2 x) cos−2 x = 1 + tan2 x, en tan 0 = 0.

Omdat de oplossing van een beginwaardeprobleem uniek bepaald
is, geldt:

f(x) = tanx =
∞∑
k=1

s2k−1
x2k−1

(2k−1)! .
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49. Beschouw de functie:

g(x) =
∞∑
k=0

s2k
x2k

(2k)! .

We berekenen de afgeleide, en gebruiken de uitdrukking voor sn uit
oplossing 47 voor n = 2k en de uitdrukking voor tanx uit oplossing 48:

g′(x) =
∞∑
k=1

s2k
x2k−1

(2k−1)!

=
∞∑
k=1

( ∑
1⩽j⩽k

s2k−2j s2j−1

(2k−2j)! (2j−1)!

)
x2k−1

=
∞∑
k=1

( ∑
i+j=k, i⩾0, j⩾1

s2i s2j−1

(2i)! (2j−1)!

)
x2k−1

=
∞∑
i=0

∞∑
j=1

s2i s2j−1

(2i)! (2j−1)! x
2i x2j−1

= g(x) · tanx.

We zien dat voor g(x) de differentiaalvergelĳking g′(x) = g(x) · tanx
opgaat, met beginvoorwaarde g(0) = 1 (met 00 = 1).

De omgekeerde cosinusfunctie voldoet: (cos−1 x)′ = sinx cos−2 x =
tanx cos−1 x, en cos−1 0 = 1.

Omdat de oplossing van een beginwaardeprobleem uniek bepaald
is, geldt:

g(x) = cos−1 x =
∞∑
k=0

s2k
x2k

(2k)! .

De reeksen f en g opgeteld:
∞∑
k=0

sk
xk

k! = tanx+ cos−1 x = 1+sin x
cos x , −π/2 < x < π/2.
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50. De priemgetallen vormen een oneindige rĳ {pk}∞k=1. Aangezien
pk > 1 en s > 1, is 0 < 1

pks
< 1, en is volgens de formule voor

meetkundige reeksen:

1

1− 1
pks

=
∞∑
l=0

(
1

pks

)l
.

Hiermee leiden we af:
∞∏
p=2

1
1− 1

ps
=

∞∏
k=1

1
1− 1

pk
s
=

∞∏
k=1

∞∑
l=0

1
pkl·s

=
∑

∀{ak}∞
k=1∈N0

N

∞∏
k=1

1
pk
ak·s =

∞∑
n=1

1
ns .

De voorlaatste som loopt over alle oneindige rĳen {ak}∞k=1 van niet-
negatieve gehele getallen. De laatste gelĳkheid geldt omdat met alle
mogelĳke producten van de priemgetallen (en pk

0 = 1) precies alle
natuurlĳke getallen worden gevormd.

51. Deze opgave staat bekend als het Bazel-probleem. De oplossing
is

∞∑
n=1

1
n2 = π2

6 ≈ 3
2 , de waarde voor s = 2 van de Riemann-zèta-

functie ζ(s) =
∞∑

n=1

1
ns . Euler bewees dit als eerste. Er bestaan vele

bewĳzen, maar geen ervan is eenvoudig en kort. We verwĳzen naar de
literatuur.
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52. Een breuk kan niet worden vereenvoudigd als teller en noemer
geen delers gemeen hebben, met andere woorden als ze onderling
ondeelbaar oftewel relatief priem zĳn. Twee gehele getallen zĳn relatief
priem precies dan als ze geen enkel priemgetal pk, k = 1, 2, . . . , als
gemene deler hebben.

De kans dat een willekeurig geheel getal deelbaar is door een
bepaald priemgetal p is 1/p, want ieder rĳtje van p opeenvolgende
gehele getallen bevat precies 1 veelvoud van p.

De kans dat twee willekeurige gehele getallen een bepaald priem-
getal p als gemene deler hebben is dus 1/p2, en dus is kans dat ze niet
beide deelbaar zĳn door p gelĳk aan 1− 1/p2.

De kans dat ze geen enkele priemfactor gemeen hebben is daarom:
∞∏
k=1

(
1− 1

pk2

)
.

Met oplossingen 50 en 51 leiden we af dat dit product de waarde
6/π2 ≈ 2/3 heeft:

∞∏
k=1

(
1− 1

pk2

)
=

∞∏
k=1

(
1

1− 1
pk

2

)−1

=

( ∞∏
k=1

1
1− 1

pk
2

)−1

=

( ∞∑
n=1

1
n2

)−1

=
6

π2
.

53. De Fibonacci-getallen zĳn: a1 = a2 = 1, an+2 = an+1 + an
voor n ⩾ 1. Delen door an+1 geeft an+2

an+1
= 1 + an

an+1
. Aannemende

dat de limiet ϕ = lim
n→∞

an+1

an
bestaat (eigenlĳk moet dat eerst worden

bewezen), voldoet ϕ aan ϕ = 1+ 1/ϕ oftewel aan ϕ2 − ϕ− 1 = 0. Deze
kwadratische vergelĳking heeft als positieve oplossing ϕ = 1+

√
5

2 , het
getal dat bekend staat als de ‘gulden snede’.

54. Aannemende dat de limiet bestaat (eigenlĳk moet dat eerst
worden bewezen), voldoet deze limiet ψ aan ψ = 1+ 1

2+1/ψ oftewel aan
2ψ2 − 2ψ − 1 = 0. Deze kwadratische vergelĳking heeft als positieve
oplossing ψ = 1+

√
3

2 .
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55. Definieer Pn(x) = cos(n arccosx), |x| ⩽ 1, n ⩾ 0. Raadpleeg in
een tabel van goniometrische gelĳkheden de product-naar-som identi-
teiten (ook de Werner-, (omgekeerde) Simpson- of ‘prosthaphaeresis’
regels genoemd). De functies Pn zĳn veeltermen:

P0(x) = cos 0 = 1,

P1(x) = cos(arccosx) = x,

P2(x) = cos(2 arccosx) = 2 cos2(arccosx)− 1 = 2x2 − 1,

. . .

Pn(x) = cos(n arccosx) = cos((n− 1) arccosx+ arccosx)
= 2 cos(arccosx) cos((n− 1) arccosx)− cos((n− 2) arccosx)
= 2xPn−1(x)− Pn−2(x).

P3(x) = 2xP2(x)− P1(x) = 4x3 − 3x,

P4(x) = 2xP3(x)− P2(x) = 8x4 − 8x2 + 1.

56. Een nde eenheidswortel is een getal z dat verheven tot de nde
macht 1 oplevert: zn = 1. De theorie van de complexe getallen leert
dat er n zĳn: z = 1, α, α2, . . . , αn−1, met α = e2πi/n. Er geldt αn = 1.
We onderzoeken de machten van α. Voor p = qn + r, 0 ⩽ r < n, is
αp = αqn+r = (αn)

q
αr = αr, dus de pde macht van α is gelĳk aan 1

precies dan als p een veelvoud is van n. Gevraagd is de som van de
kde machten van de n nde eenheidswortels:
– Als k een veelvoud is van n, dan zĳn de kde machten van de nde

eenheidswortels, die op hun beurt machten van α zĳn, alle n gelĳk
aan 1 en is hun som dus gelĳk aan n.

– Als k geen veelvoud is van n, dan is de gevraagde som een partiële
som van de meetkundige rĳ met reden αk 6= 1: 1k+αk+(α2)

k
+· · ·+

(αn−1)
k
= 1+αk + (αk)

2
+ · · ·+ (αk)

n−1
= 1−(αk)

n

1−αk
= 1−(αn)k

1−αk
= 0.
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57. Zie hieronder links de kromme t 7→ (cos 2t, sin 3t), en rechts de
kromme t 7→ (t3 − 3t, t4 − 2t2).

58. Met de complexe exponentiële functie en het binomium van
Newton geldt:

sin100 x =

(
eix − e−ix

2i

)100

=
1

(2i)
100

100∑
k=0

(
100
k

)
· e(100−k)ix · (−1)

k · e−kix

=
1

2100

100∑
k=0

(
100
k

)
· (−1)

k · e(100−2k)ix.

Nemen we de integraal
∫ 2π

0
, dan blĳft in het rechterlid, na verwisseling

van
∫

en
∑

, alleen de middelste term (k = 50) over (
∫ 2π

0
enix dx = 0

voor n 6= 0). Dus:∫ 2π

0

sin100 x dx =
(−1)

50

2100

(
100

50

)∫ 2π

0

e0 dx =
100! · π
299 · 50!2

.

Met de formule van Stirling, n! ≈ nn
√
2πn

en , volgt:

100! · π
299 · 50!2

≈
2 · 100100 ·

(
e50
)2 · √200π · π

2100 ·
(
5050

)2 · e100 · (√100π
)2 =

√
2π

5
≈
√

1

4
=

1

2
.

Dus: ∫ 2π

0

sin100 x dx ≈ 1

2
.
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59. We halen logaritmisch afleiden van stal: (ln f(x))′ = f ′(x)
f(x) , dus

f ′(x) = f(x)(ln f(x))′, waarbĳ ′ differentiatie naar x aangeeft. Aldus
(xx)′ = xx(lnxx)′ = xx(x lnx)′ = xx(1 · lnx+ x · 1/x) = xx(1 + lnx).
Neem de integraal

∫ 10

1
. Het linkerlid is

∫ 10

1
(xx)′ dx = 1010−11 ≈ 1010.

Het rechterlid is
∫ 10

1
xx(1 + lnx) dx ≈ (1 + ln 10)

∫ 10

1
xx dx, omdat xx

zich op 1 ⩽ x ⩽ 10 in de omgeving van x = 10 concentreert (zie
hieronder de grafiek van de afbeelding x 7→ xx) en lnx daar niet sterk
varieert ( ln 10−ln 8

ln 10 ≈ 0,097). Er volgt
∫ 10

1
xx dx ≈ 1010

1+ln 10 ≈ 3 · 109.
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60. De drie grootcirkels die de driehoek met hoeken (α, β, γ) bepalen,
verdelen het boloppervlak in acht stukken: naast de driehoek zelf zĳn
dat een identieke, diametraal gelegen driehoek, en nog zes partjes
(stukken bolschil bepaald door twee halve grootcirkels tussen twee
diametraal gelegen punten op de bol) met één tip afgeknot door één
van beide driehoeken (teken dit op een sinaasappel!).

De oppervlakte van de bol met straal 1 is 4π. De oppervlakte van
een partje van hoek ϕ is (ϕ/2π) · 4π = 2ϕ en van een afgeknot partje
2ϕ − S, waarin S de oppervlakte van de driehoek is. Voor gegeven
(α, β, γ) volgt S uit het gelĳkstellen van de acht genoemde stukken
aan de bolschil: S + S + (2α− S) + (2α− S) + (2β − S) + (2β − S) +
(2γ − S) + (2γ − S) = 4π, waaruit volgt S = α+ β + γ − π.

61. Een willekeurig punt P op de rollende kleine cirkel dat op een
bepaald moment de grote cirkel raakt, raakt na één omwenteling de
grote cirkel opnieuw. De booglengte langs de grote cirkel tussen de
twee raakpunten is gelĳk aan de omtrek r = 1/n van de kleine cirkel.
De omtrek van de grote cirkel is 1/r = n maal de omtrek van de kleine.
De baan van het punt P bestaat dus uit n bogen. In het geval dat
r = 1/2, beweegt P heen en weer over een middellĳn van de grote
cirkel.
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62. De kans dat in een klas van n leerlingen er twee op dezelfde dag
jarig zĳn is uiteraard 0 voor n = 1 en 1 voor n > 365 (schrikkeljaren
en verjaardagen op 29 februari laten we buiten beschouwing). Het
aantal mogelĳke verdelingen van n verjaardagen over het jaar is 365n,
en zonder samenvallende verjaardagen 365 ·364 · . . . · (365−n+1). We
nemen aan dat de ene dag niet populairder is als verjaardag dan de
andere. De kans op geen samenvallende verjaardagen is dus:

pn =
n−1∏
k=0

365−k
365 .

Deze kansen zĳn achtereenvolgens te berekenen via:

p1 = 1, pn = pn−1 ·
365− n+ 1

365
voor 2 ⩽ n ⩽ 365.

De kans op samenvallende verjaardagen in een klas van n leerlingen is
gelĳk aan 1− pn; deze is hieronder uitgezet in een grafiek. Het blĳkt
dat p23 ≈ 1/2, dus n0 = 23. In een klas van 30 leerlingen is de kans op
twee jarigen op één dag al 1− p30 ≈ 0,7.
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63. De brekingsindex n(y) bereikt een maximum op een zekere hoog-
te y = y∗. Een lichtstraal die op een voorwerp weerkaatst in een punt
met y = y0 niet te ver van y∗ vandaan en onder een uitgaande hoek
α = α0 met de verticaal, voldoet aan n(y) sinα = n(y0) sinα0.

Omdat 0 < α < π en dus 0 < sinα ⩽ 1, loopt de lichtstraal binnen
de horizontale strook overeenkomend met n(y0) sinα0 ⩽ n(y) ⩽ n(y∗).
Neemt n(y) af, dan neemt sinα toe, dus neigt α naar π/2. We conclu-
deren dat de lichtstraal golft in een strook rond y = y∗, met langere
golven naarmate α0 dichter bĳ π/2 ligt; voor α0 = π/2 is de lichtstraal
recht.

(Een waarnemer vormt zich een beeld van het voorwerp op basis
van de lichtstralen die in zĳn oog vallen, en wel op basis van de
richtingen waaronder die golvende lichtstralen invallen. Omdat die
golven verschillende golflengten kunnen hebben, kan de verticale on-
derlinge ligging van twee lichtstralen uit twee verschillende punten van
het voorwerp bĳ aankomst in het oog zĳn omgekeerd. Het voorwerp
lĳkt dan ondersteboven te staan.)
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64. Dit vraagstuk staat bekend als het probleem van Fagnano. We
gebruiken een natuurkundig argument, en nemen voor de gegeven
driehoek ABC (met hoeken α, β, γ en zĳden met lengten k, l,m) een
gladde ĳzerdraad en voor de gezochte driehoek KLM (met hoeken
κ, λ, µ) een elastiek. Het elastiek neemt vanzelf de minimale lengte aan.
Omdat de spankracht in het elastiek in rust overal dezelfde waarde
heeft, zĳn in elk hoekpunt van KLM de hoeken tussen zĳn zĳden
en de betreffende zĳde van ABC gelĳk (anders zou het elastiek nog
verschuiven totdat de krachten in de punten K,L,M in evenwicht
zĳn), oftewel de hoekdeellĳnen van κ, λ, µ staan loodrecht op de zĳden
van ABC.

Eerst berekenen we de hoeken en zĳden van de driehoeken AKM ,
BKL, CLM . Omdat de hoeken per driehoek optellen tot π radialen,
geldt het stelsel vergelĳkingen α + 1/2(π − κ) + 1/2(π − µ) = π, β +
1/2(π − κ) + 1/2(π − λ) = π, γ + 1/2(π − λ) + 1/2(π − µ) = π. Dit heeft
als oplossing κ = α+ β − γ, λ = −α+ β + γ, µ = α− β + γ. Omdat
ook α + β + γ = π, volgt k = π − 2γ, λ = π − 2α, µ = π − 2β. En
hieruit volgt weer dat AKM , BKL, CLM gelĳkvormig zĳn met ABC,
met schaalfactoren resp. 0 < u, v, w < 1 waarmee de lengten van hun
zĳden kunnen worden uitgedrukt ten opzichte van k, l,m. Voor de
lengten van de zĳden geldt k = um+ vl, l = vk + wm, m = uk + wl,
met oplossing u = k2+m2−l2

2km , v = k2+l2−m2

2kl , w = l2+m2−k2

2lm .
Beschouw nu de loodrechte projectie P van het hoekpunt C op de

zĳde AB, op afstand p van A en q van C. Toepassen van de stelling van
Pythagoras op ACP en op BCP , dus p2+q2 = m2 en (k−p)2+q2 = l2,
geeft p = k2+m2−l2

2k . We zien dat p = um, en dat dus K = P . En
analoog voor de twee andere hoekpunten.

Dus de hoekdeellĳnen van κ, λ, µ staan loodrecht op de zĳden van
ABC en gaan door zĳn hoekpunten, en zĳn dus zĳn hoogtelĳnen. We
concluderen dat KLM de voetpuntsdriehoek van het hoogtepunt van
ABC is; zĳn omtrek bedraagt ul + vm+ wk.
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65. In oplossing 26 hebben we gezien dat een strookje van een bol-
schil en de projectie ervan op de cylindermantel die de bol omvat
dezelfde opppervlakte hebben. Daaruit volgt dat plakjes van de bol-
schil van gelĳke hoogte gelĳke oppervlakte hebben. Het gemiddelde
van een functie op een bol die per breedtecirkel constant is, is daarom
gelĳk aan het gemiddelde van die functie over de breedtecirkels.

Voor de gegeven bol met straal R en middelpunt (X,Y, Z) passen
we dit nu toe, waarbĳ de rechte lĳn door de oorsprong (0, 0, 0) en het
punt (X,Y, Z) de as van onze beschouwing vormt. De uitdrukking 1/r,
waarin r de afstand tot de oorsprong is, wordt als functie over de
breedtecirkels gegeven door:

r(h) =
√

(ρ+ h)2 +R2 − h2 =
√
R2 + ρ2 + 2ρh, −R ⩽ h ⩽ R,

met ρ = r(X,Y, Z).
Merk op dat:

r′(h) =
ρ

r(h)
.

Hieruit volgt voor het gevraagde gemiddelde op de bol:(
1

r

)
=

1

2R

∫ R

−R

dh

r(h)
=

1

2Rρ

∫ R

−R

r′(h) dh =
1

2Rρ
(r(R)− r(−R)).

We onderscheiden het geval dat de oorsprong buiten de bol ligt, R < ρ:

. . . =
1

2Rρ
(ρ+R− (ρ−R)) =

1

ρ
,

het geval dat de oorsprong binnen de bol ligt, ρ < R:

. . . =
1

2Rρ
(ρ+R− (R− ρ)) =

1

R
,

en het geval dat de oorsprong op de bol ligt, ρ = R:

. . . = lim
ϵ↓0

1

2R

∫ R

−R+ϵ

dh

r(h)
= . . . =

1

R
.
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66. In oplossingen 66 t/m 70 rekenen we met logaritmen. Reken-
regels zĳn: logg g = 1, logg gb = b, logg ab = b logg a, logg(a · b) =
logg a+ logg b, logg a

b = logg a− logg b.

Er geldt 10 log10 2 = log10 210 = log10 1024 ≈ log10 103 = 3, dus
log10 2 ≈ 0,3 is een grove benadering.
Exact geldt 10 log10 2 = log10 210 = log10 1024 = log10(103 · 1,024) =
log10 103 + log10 1,024 = 3 + log10 1,024, dus:

log10 2 =
3

10
+

1

10
log10 1,024.

We zoeken een schatting log10 1,024 ≈ 1/n, voor een natuurlĳk getal n.
Dit betekent 101/n ≈ 1,024 oftewel 1,024n ≈ 10. We kunnen uitrekenen
dat 1,02497 ≈ 9,979 en 1,02498 ≈ 10,219. Met log10 1,024 ≈ 1/97 ≈
0,01031 is een betere benadering log10 2 ≈ 0,301.

67. We gebruiken de benadering log10 2 ≈ 0,301 uit oplossing 66.
log10 4 = log10 22 = 2 log10 2 ≈ 0,602
log10 8 = log10 23 = 3 log10 2 ≈ 0,903
log10 5 = log10 10

2 = log10 10− log10 2 ≈ 1− 0,301 = 0,699
log10 50 = log10(10 · 5) = log10 10 + log10 5 ≈ 1 + 0,699 = 1,699
log10 32 = log10 25 = 5 log10 2 ≈ 1,505
log10 128 = log10 27 = 7 log10 2 ≈ 2,107
log10 125 = log10 53 = 3 log10 5 ≈ 2,097
log10 64 = log10 26 = 6 log10 2 ≈ 1,806

68. Er geldt dat 2 log10 7 = log10 72 = log10 49 ≈ log10 50, dus
log10 7 ≈ 1

2 log10 50. In oplossing 67 zagen we dat log10 50 ≈ 1,699.
Dus log10 7 ≈ 0,850.

69. Er geldt log10 9+ log10 7 = log10(9 · 7) = log10 63 ≈ log10 64. We
zagen log10 64 ≈ 1,806 en log10 7 ≈ 0,850, in respectievelĳk oplossin-
gen 67 en 68. Er volgt log10 9 ≈ log10 64 − log10 7 ≈ 0,956. We
gebruiken ook de benadering log10 2 ≈ 0,301 uit oplossing 66.
log10 3 = log10

√
9 = 1

2 log10 9 ≈ 0,478
log10 27 = log10 33 = 3 log10 3 ≈ 1,434
log10 6 = log10(2 · 3) = log10 2 + log10 3 ≈ 0,779
log10 12 = log10(22 · 3) = 2 log10 2 + log10 3 ≈ 1,080
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70. Neem twee natuurlĳke getallen m en n die ongeveer even groot
zĳn: m

n = 1 + m−n
n ≈ 1 en 0 < |m−n

n | � 1.
Er geldt log10 m

n = log10m− log10 n.
Met de gegeven betrekking en de lineaire benadering geldt ook

log10 m
n = log10(1 + m−n

n ) = 1
ln 10 · ln(1 + m−n

n ) ≈ 1
ln 10

(
m−n
n

)
.

Er volgt:
ln 10 ≈ m− n

n(log10m− log10 n)
.

Verder geldt met de gegeven betrekking en ln e = loge e = 1:

log10 e =
ln e
ln 10 =

1

ln 10 .

Voor m = 1024, n = 1000, en met de benadering log10 1,024 ≈ 1/97
uit oplossing 66, volgt: ln 10 ≈ 2,328 en log10 e ≈ 0,430.

[Als we een getal y benaderen met een product van steunpunten yi
met bekende log10 yi, i = 1, . . . , n, dan is y = (1 + x)

n∏
i=1

yi voor een
zekere kleine x, en:

log10 y = log10
(
(1 + x)

n∏
i=1

yi

)
=

n∑
i=1

log10 yi + log10(1 + x)

=
n∑

i=1

log10 yi +
ln(1+x)
ln 10

≈
n∑

i=1

log10 yi + 1
ln 10

(
x− x2

2 + x3

3 − x4

4 + · · ·
)
.]

35



71. We gebruiken de Equidistributiestelling van Weyl: Voor elk ir-
rationaal getal α zĳn de decimale delen van de getallen α, 2α, 3α, . . .
gelĳkmatig verdeeld over het interval tussen 0 en 1; het percentage van
deze decimale delen op een willekeurig deelinterval is evenredig aan
de lengte ervan. Het bewĳs is niet eenvoudig en kort. We verwĳzen
naar de literatuur.

Dat een reëel getal x ⩾ 1 begint met het cĳfer k, k = 1, 2, . . . , 9,
betekent:

k · 10n ⩽ x < (k + 1) · 10n,

voor een zeker geheel getal n ⩾ 0. Om de machten te kunnen hanteren,
nemen we hun logaritmen. Daarvoor gelden dezelfde ongelĳkheden,
daar de logaritme een strikt monotoon stĳgende functie is. Dus:

0 ⩽ log10 k ⩽ log10 x− n < log10(k + 1) ⩽ 1,

oftewel het decimale deel van het getal log10 x ligt tussen log10 k en
log10(k + 1). De getallen log10 k verdelen het interval van 0 tot 1 in
negen deelintervallen:

0 = log10 1 < log10 2 < . . . < log10 9 < log10 10 = 1.

Laat nu x over de machten van 2 lopen, dus x = 2m, m ⩾ 0 geheel,
en log10 x = log10 2m = m log10 2. Toepassing van de Equidistributie-
stelling van Weyl met α = log10 2 (is irrationaal, want log10 2 = a

b zou
betekenen dat 2a = 10b = 2b ·5b, strĳdig met de eenduidigheid van de
priemfactorontbinding) leidt tot de conclusie dat de kans pk dat een
macht van 2 met het cĳfer k begint, gelĳk is aan:

pk = log10(k + 1)− log10 k = log10
(
1 +

1

k

)
,

dus p1 ≈ 0,301, p2 ≈ 0,176, p3 ≈ 0,125, p4 ≈ 0,097, p5 ≈ 0,079,
p6 ≈ 0,067, p7 ≈ 0,058, p8 ≈ 0,051, p9 ≈ 0,046, en vanzelfsprekend is
Σ9

k=1pk = 1.

72. Analoog aan oplossing 71 (bedenk dat ook log10 3 irrationaal is,
immers log10 3 = a

b zou betekenen dat 3a = 2b · 5b, wat onmogelĳk
is).
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73. Wat hier staat is dat hoe vaak de afbeelding g ook wordt toe-
gepast, er altĳd een punt x in U is dat weer in U terugkeert.

Beschouw de oneindige rĳ beelden gjN (U), j ⩾ 0, van U . Omdat
de omgeving U een oppervlakte groter dan 0 heeft en g oppervlakte-
bewarend is, overlappen sommige gjN (U). Zonder overlap zou hun
gezamenlĳke oppervlakte immers oneindig zĳn, terwĳl M begrensd
is. Er zĳn dus zekere k en l, 0 ⩽ k < l, waarvoor gkN (U) en glN (U)
overlappen. Neem een punt z in hun doorsnede. Hiervoor bestaan
punten x en y in U zodat glN (x) = gkN (y) = z. Omdat g injectief is,
kunnen we kN keer teruggaan. Dan volgt g(l−k)N (x) = y. Dus er is
een x in U waarvoor gT (x), T = (l − k)N ⩾ N , weer in U ligt.

74. Eerst bewĳzen we dat de afbeelding g(α, β) = (α + 1, β +
√
2)

(mod 2π) geen periodieke punten heeft. Het verschil tussen twee ite-
raties gT (α, β) en gT+t(α, β), T ⩾ 0 en t ⩾ 1, van een punt (α, β)
is gelĳk aan (t, t

√
2) (mod 2π). Dit is nooit gelĳk aan (0, 0), (0, .) of

(., 0), want gehele veelvouden van 1,
√
2 en π zĳn opgeteld nooit gelĳk

aan 0 (1 is geheel,
√
2 irrationaal en algebraïsch, en π transcendent).

Dus iteraties vallen niet samen, en liggen ook niet recht naast of onder
elkaar.

De afbeelding g is eenvoudigweg een verschuiving, dus het volstaat
de dichtheid te bewĳzen van de rĳ iteraties van één bepaald beginpunt,
zeg (0, 0). Omdat de punten van de rĳ {gT (0, 0)}, T ⩾ 0, allen verschil-
lend zĳn en de torus een eindige oppervlakte heeft, zĳn er gM (0, 0)
en gM+N (0, 0), met zekere M ⩾ 0 en N ⩾ 1, die willekeurig dicht
bĳ elkaar liggen. Daar g een verschuiving is, liggen de punten van de
deelrĳ {gNT (0, 0)} op onderling gelĳke, willekeurig kleine afstanden
op een lĳn die zich om de torus windt met helling λ = ∆α

∆β = N−2Kπ
N

√
2−2Lπ

,
voor zekere K,L ⩾ 0. Merk op dat 0 < |λ| < ∞, en dat λ irrationaal
is, want p(N

√
2−2Lπ) = q(N−2Kπ) heeft geen oplossing voor gehele

p en q.
Deze lĳn snĳdt (α, 0), 0 ⩽ α < 2π, in (2πλj, 0) (mod 2π), j ⩾ 0.

Analoog aan het bovenstaande kan worden beredeneerd dat de ite-
raties hjλ(0) = 2πλj (mod 2π), j ⩾ 0, van de verschuiving hλ(α) =
α+2πλ (mod 2π) allen verschillend zĳn (want gehele veelvouden van 1
en het irrationale getal λ zĳn opgeteld nooit gelĳk aan 0) en er een
deelrĳ is met onderling gelĳke, willekeurig kleine afstanden; dit is de
Stelling van Jacobi. De lĳn windt zich dus dicht om de torus.

Samenvattend zien we dat de deelrĳ {gNT (0, 0)} en daarmee de
rĳ {gT (0, 0)} dicht ligt in de torus.
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75. De afbeelding g(α, β) = (2α+ β, α+ β) (mod 2π) staat bekend
als Arnold’s CAT map (Continu Automorfisme van de Torus) of als
Arnold’s cat map (Arnold gebruikte ter illustratie een tekening van
een kattengezicht) of ook wel als Thom map.

Beschouw de punten op de torus geënt op de gelĳknamige breuken
tussen 0 en 1 met een bepaalde noemer n: x = (α, β) =

(
2π · a

n , 2π · b
n

)
,

0 ⩽ a, b < n. Omdat g een lineaire afbeelding is met geheeltallige
coëfficienten, zĳn alle iteraties gj(x), j ⩾ 0, van deze vorm. Omdat
er precies n2 van deze punten zĳn, bestaan er voor elke x onder
de eerste n2 + 1 iteraties twee samenvallende: gN(x)(x) = gM(x)(x),
0 ⩽M(x) < N(x) ⩽ n2. De afbeelding g heeft een inverse, te weten
g−1(α, β) = (α−β,−α+2β). Teruggaan via g−M(x) geeft gT (x)(x) = x,
T (x) = N(x)−M(x), dus x is een periodiek punt van de afbeelding g
met periode 0 < T (x) ⩽ n2.

We zien dat alle x periodieke punten van g zĳn. Loopt n over
de natuurlĳke getallen, dan bestrĳken de breuken met noemer n in
de definitie van x alle rationale getallen tussen 0 en 1. Zoals bekend
liggen de rationale getallen dicht in de reële getallen. Alle aangeduide
periodieke punten samen liggen bĳgevolg dicht in de torus.

76. ???

77. ???
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