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Samenvatting
Dit document geeft oplossingen bij V.I. Arnold’s opgavenboek

Opgaven voor kinderen van 5 tot 15.

We hebben telkens gezocht naar eenvoudige, elegante bewijzen
en hebben deze in een gebalde stijl opgeschreven.


https://www.imaginary.org/sites/default/files/5to15_nl_nl_0.pdf




Opmerkingen bij de oplossingen

Sommige bewijzen lijken buiten bereik van de doelgroep van kinderen
van 5 tot 15 te liggen, met name bij de formule van Cayley (oplos-
sing 46), het Bazel-probleem (opgave 51) en de Equidistributiestelling
van Weyl (gebruikt in oplossing 71). In die gevallen verwijzen we naar
de literatuur.

In de volgende twee vermeldenswaardige boeken zijn van een aantal

opgaven oplossingen te vinden:

— V.1 Arnold, Mathematical understanding of nature: essays on
amazing physical phenomena and their understanding by
mathematicians, American Mathematical Society.

— M. Aigner, G. M. Ziegler, Proofs from THE BOOK, Springer.






Oplossingen

1. De kopeke die Misha tekort kwam, kon Masha blijkbaar niet
bijleggen. Masha had dus geen enkele kopeke! Gegeven is dat zij er
zeven tekort kwam. Het boek kostte dus zeven kopeken.

2. Van de 10 kopeken die de fles en de kurk samen kosten, vormen 9
het prijsverschil tussen kurk en fles. De resterende kopeke valt uiteen
in twee helften: de prijs van de kurk en een deel van de prijs van de
fles. De fles alleen kost dus 91/2 kopeken.

3. Er staat in feite dat een halve baksteen een pond weegt. De hele
steen weegt dus twee pond.

4. Na het over en weer overgieten zijn de vloeistoffen in vat en glas
mengsels geworden, maar vat en glas zijn elk wel weer precies zo vol
als aan het begin. Dus bevatten ze gelijke volumes vreemde vloeistof.

5. Laat ¢ de tijdsduur tussen zonsopkomst en het middaguur (12 uur)
aangeven. De afstand die de eerste dame in t uur aflegde, legde de
tweede dame in 21 — 12 = 9 uur af, dus de eerste dame was % keer
zo snel als de tweede dame. De afstand die de tweede dame in ¢t uur
aflegde, legde de eerste in 16 — 12 = 4 uur af, dus de eerste was
i keer zo snel als de tweede. De twee breuken staan voor dezelfde
snelheidsverhouding: % = %, dus t = 6. De zonsopkomst was dus om

12—t =12 —6 = 6uur.

6. De Amerikaanse scholieren gebruikten zonder verder na te denken
de formule “de oppervlakte van een driehoek is gelijk aan de basis maal
de halve hoogte™: 10 - % -6 = 30.

De Russische kinderen daarentegen begrepen dat de driehoek uit
de opgave helemaal niet kan bestaan. Van welke rechthoekige driehoek
dan ook die op zijn schuine zijde met lengte 10 als basis ligt, is de
hoogte h hoogstens 5 en nooit 6. De loodlijn uit de top verdeelt de
driehoek in twee rechthoekige driehoeken met rechthoekszijden h en
l, respectievelijk A en 10 — [. Driemaal de stelling van Pythagoras
toepassen levert h = /- (10 — ), met maximum h = 5 voor | = 5
(de top ligt op de halve cirkel met de basis als diameter).



7. Vasya niet meegerekend, is het aantal meisjes in het gezin 2 groter
dan het aantal (nul of meer) jongens. Vasya is zelf een jongen, dus in
het hele gezin is er 1 meisje meer dan dat er jongens zijn.

8. De oppervlakte van de bloem verdubbelt zich elke dag. Op 1 juli
is de hele vijver bedekt, dus de helft was bedekt op de dag ervoor, op
30 juni.

9. De boer zet eerst de geit over, vaart terug, zet vervolgens de wolf
over, neemt de geit mee terug, brengt de kool over, vaart weer terug,
en neemt ten slotte de geit nog een keer mee naar de overkant.

10. Deslak stijgt 3—2 = 1 cm per etmaal. Aan het begin van dag 998
zit hij op een hoogte van 9m en 97 cm. Gedurende die dag klimt hij
3 cm tot 10 m hoogte en bereikt hij de top van de paal met het hapje.

11. De voor de hand liggende oplossing voor de plek van de tent is
de noordpool. De beer was dus een ijsbeer, dus wit.

Daarnaast zijn er oneindig veel oplossingen in de buurt van de
zuidpool. Beschouw daar breedtecirkels C), met omtrek 10 km/n, voor
n =1,2,.... Als de tent zich bevindt op een willekeurig punt op de
breedtecirkel 10km ten noorden van zo’n cirkel C,, (gemeten over het
aardoppervlak), dan kan de opgegeven weg worden afgelegd. De 10 km
oostwaarts bestaat uit het n keer doorlopen van C,.

12. Het tij wordt vooral bepaald door de zwaartekracht van de maan.
De maan draait in ongeveer 30 dagen om de aarde, met de draaiing
van de aarde mee. Omdat de maan vooruitloopt op de aarde, heeft
een bepaalde plaats op aarde de volgende dag pas ongeveer 1/30 dag
oftewel 48 minuten later weer dezelfde positie ten opzichte van de
maan. Het antwoord is dus rond 12.48 uur.

13. We nemen aan dat de twee boeken op volgorde staan, dus dat
het tweede deel rechts van het eerste deel staat. Bekijk of teken deze
situatie! Je ziet dat er zich tussen de eerste bladzijde van het eerste
deel en de laatste bladzijde van het tweede deel alleen de voorkaft van
het eerste deel en de achterkaft van het tweede deel bevinden. De twee
kaften zijn samen 4 mm dik.



14. Er zijn vele oplossingen. De figuur toont een mogelijk zijaanzicht
van een lichaam dat het gevraagde voor- en bovenaanzicht heeft.

15. 777

16. We beschouwen een trap van n+1, n > 1, gestapelde staven van
lengte 1, genummerd van boven naar beneden. k =1 is de hoogste
staaf en £k = n 4+ 1 de laagste. Elke staaf k, 1 < k < n, heeft een
overhang zj; > 0 ten opzichte van de onderliggende staaf k + 1.

Met zx, 1 < k < n, geven we de horizontale afstand aan tussen het
zwaartepunt van de bovenste k staven en het midden van staaf k + 1:
z1 =z en zg = (2 + (K — 1) (xp + 26-1))/k = . + ( )zk 1 voor
1<k<n.

De voorwaarde voor stabiliteit van de hele stapel is z; < % voor
alle 1 < k < n. We zoeken de grens op: z; = % voor alle 1 < k < n.

1

Dan volgt zx = 3 ( — %) = 2—116, 1 < k < n. De totale overhang is:

>+

k=1
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k‘\)—l

n
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k=1

o0

Het is bekend dat de harmonische reeks Y. 1 divergeert, dus x kan
k=1

willekeurig groot zijn door n groot genoeg te nemen en zy = i

17. De onderlinge afstand van de twee fietsers is aanvankelijk 40 km
en neemt af met 10 + 15 = 25 km/uur. Ze treffen elkaar dus na 40/25 =
1,6 uur. In die tijd legt de vlieg 100 - 1,6 = 160 km af.

18. Dat is niet mogelijk. Neem 31 dominostenen met een witte en
een zwarte helft. Deze kunnen op een schaakbord altijd kleur op kleur
worden gelegd (waar dat niet het geval is, is dat op te lossen door
een steen andersom te leggen), en laten één wit veld en één zwart
veld onbedekt. Tegenoverliggende hoekvelden op dezelfde diagonaal
hebben echter dezelfde kleur.



19. De rups moet hoe dan ook over twee zijvlakken van de kubus
kruipen. Dat kan via zes combinaties van twee zijvlakken. Worden
de twee vlakken in gedachten plat neergelegd als een rechthoek, dan
komen begin- en eindpunt van de weg overeen met schuin tegenover
elkaar liggende hoekpunten. De kortste weg daartussen — een rechte
lijn — is een diagonaal van de rechthoek (met lengte v/5 maal de lengte
van de ribbe van de kubus). De overeenkomende weg op de kubus
kruist een ribbe in het midden.

20. Vul het 3 liter vat volledig met water en giet het leeg in het
5 liter vat. Vul het 3 liter vat nogmaals volledig en giet daaruit zoveel
in het 5 liter vat tot dat vol is. Het restant in het 3 liter vat is één
liter.

21. Bijelk hoofd hoort minstens één paar benen, dus bij vijf hoofden
horen minstens tien benen. Dan zijn er nog twee paar benen over, dus
er zijn twee honden. De overige hoofden en benen zijn goed voor drie
mensen.

22. Deze uitspraak staat bekend als de Stelling van Napoleon. We
geven een aanschouwelijk bewijs. We draaien één van de gelijkzijdige
driehoeken om elk van de centra van de twee andere, over 27/3 radialen,
in tegengestelde richtingen zodat de beelden samenvallen. De grijze
driehoeken in de figuur zijn dan gelijkbenig, met hoeken van 7/6 en
27/3 radialen, en even groot. Daaruit volgt dat de driehoek die wordt
bepaald door de centra *, hoeken van 7/3 radialen heeft en dus gelijk-
zijdig is.




23. Omdat een kubus zes zijvlakken heeft, zijn zevenhoeken niet
mogelijk. De figuur in de opgave toont een willekeurige driehoek. Het
is eenvoudig in te zien dat ook gelijkbenige en gelijkzijdige driechoeken
mogelijk zijn. Vierhoeken, rechthoeken, een vierkant, vijthoeken en
zeshoeken zijn ook mogelijk. Een zeshoek is regelmatig als het platte
vlak de ribben in hun midden snijdt. Een regelmatige vijfhoek is niet
mogelijk.

24. Neem zonder verlies van algemeenheid de kubus met de oor-
sprong (0,0,0) als centrum en de acht hoekpunten (+l,=+l,+l) op
afstand 1 van de oorsprong, dus [ = 1/v3. Beschouw lijnen door
de oorsprong met hun richtingen bepaald door punten (ej, ez, e3) op

3
afstand 1 van de oorsprong, dus Y e;> = 1. Van de hoeken a,, n =
j=1
1,...,8, tussen een bepaalde lijn en de lijnstukken van de oorsprong

3
naar de hoekpunten van de kubus zijn cosa, = £l - e, volgens
=1

J
de formule voor het inwendig product. De afstanden tussen de hoek-

punten en deze lijn bedragen sin a,,. De som van hun kwadraten is:

2
8 8 3
Sisin?a, = (1 —cos?a,) =8~ 3 Sootl-ej
n=1 n=1 (£, £+, \j=1
3 3

=8—-82Y e2— X > l-ej-tl-e, =16/3

Jj=1 (E£L,E£LED) §,k=1;77#k
(de 48 termen van de laatste som vallen tegen elkaar weg). Deze
uitkomst is onafhankelijk van (eq, eq, e3), dus voor alle lijnen gelijk.



25. Het blijkt dat de snijkromme een ellips is met A en B als brand-
punten. Voor elk punt op een ellips is de som van diens afstanden tot
de brandpunten gelijk.

Vanaf een willekeurig punt buiten een bol is de afstand langs elke
raaklijn aan de bol tot het raakpunt gelijk. Dit passen we toe op elk
punt van de snijkromme en beide bollen van Dandelin, met lijnstukken
naar de raakpunten A en B, en lijnstukken langs een beschrijvende
lijn van de kegel naar elk van beide cirkels waar de bollen de kegel
raken: in de figuur zijn de groene lijnstukken even lang en zijn de rode
lijnstukken even lang.

De som van de lengten van deze lijnstukken, het groene en het
rode lijnstuk (beschouw deze op de beschrijvende lijn van de kegel), is
voor alle punten op de snijkromme gelijk, omdat de genoemde cirkels
gecentreerd zijn op de as van de kegel en in evenwijdige vlakken
loodrecht op deze as liggen.

Dus op de snijkromme is de som van de afstanden tot A en B
constant, dus de kromme is een ellips met brandpunten A en B.

A\
o)
K2

~—

Met dank aan: DandelinSpheres, via Wikimedia Commons.
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26. Beschouw een smalle strook op het aardoppervlak rond breedte-
graad ¢.

Is R de straal van de aarde, dan heeft de betreffende breedtecirkel
straal R cos ¢. Dus de verhouding van de omtrek van de projectie van
de breedtecirkel op de cilindermantel en de omtrek van de breedte-
cirkel zelf is 1/cos ¢.

De raaklijn aan elke meridiaan in het snijpunt met de betreffende
breedtecirkel maakt een hoek ¢ met de lijn door dit punt evenwijdig
aan de cilinderas. Dus de verhouding van de breedte van de projectie
van het strookje op de cilindermantel en de breedte van het strookje
zelf is cos ¢.

Samengevat is deze projectie een oppervlaktegetrouwe afbeelding;:
cos ¢ - 1/ecos¢ = 1. In het bijzonder heeft de projectie van Frankrijk
dezelfde oppervlakte als het land zelf.

27. Met het binomium van Newton kunnen we schrijven:
P
2”:(1+1)p:k2()1” b1k = Zk,(p oIk
Dit kan worden uitgewerkt tot:
(p—1)/2

!

Halveren levert de gezochte betrekking:

(p=1)/2
-l —yp < > k!(’(’p_li!)l> +1=pa+1, met a geheel.
k=1

In deze afleiding zijn twee punten doorslaggevend. Omdat p oneven

is, is % geheel. Omdat p priem is, zijn % geheel (binomiaal-

coéfficiénten zijn geheel, in (?) = k!(}z:l—k)l = p'(p,;bl 1)(p A s p

wel een priemdeler van de teller maar niet van de noemer, dus zijn

%(2) = kn(?p 1%. ook geheel).
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28. Deze opgave staat bekend als het naaldprobleem van Buffon.
Laat | de waarde zijn van de regelafstand en de naaldlengte; de
precieze waarde, hier 10, maakt niet uit. Twee parameters bepalen
de positie van de gevallen naald ten opzichte van de lijnen op het
papier: de hoek ¢, 0 < ¢ < 7, tussen de richting van de naald en
de richting loodrecht op de lijnen, en de afstand d, 0 < d < é, van
het midden van de naald tot de dichtstbijzijnde lijn. De projectie
van de naald loodrecht op de lijnen heeft lengte [cos¢. De naald
kruist de dichtstbijzijnde lijn als d < 7cosgz$ De (¢,d) rechthoek
heeft oppervlakte g C s = ”l . Het deel d < 5 cosgb heeft oppervlakte

5 foi cospdp = De kans dat de naald een lijn kruist is gelijk aan

de verhouding van de oppervlakten: 2 / LU 2

Laat nu de naald licht gekromd zijn met a- l 0 < a < 1, de afstand
tussen de uiteinden van de naald. De kans dat de naald een lijn kruist
is nu: &t/ml — 2a

2 /4 ™
29. Voor convexe veelvlakken met H hoekpunten, R ribben en 7 zij-
vlakken geldt de formule van Euler: H — R+ Z = 2.

Wanneer alle zijvlakken driehoeken zijn, dan horen er bij elk zijvlak
drie ribben en bij elke ribbe twee zijvlakken (voor de hoekpunten
kunnen we niet soortgelijke uitspraken doen). Het is niet zo dat het
veelvlak drie keer zoveel ribben als zijvlakken heeft of twee keer zoveel
zijvlakken als ribben, omdat er in die tellingen dubbelingen zitten.
De genoemde verhoudingen gelden wel voor het aantal (ongeordende)
paren van zijvlak en ribbe. Dit aantal is gelijk aan 3Z en ook gelijk aan
2R, dus 3Z = 2R. In dit geval luidt de formule van Euler: Z = 2H —4.
Zie in de figuur in de opgave de tetraéder: H = 4, R = 6,7 = 4,
octaéder: H =6, R = 12,7 = 8, icosaéder: H = 12, R = 30, Z = 20.
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30. In de figuur is een kubus in een dodecaéder getekend. De dode-
caéder heeft 12 zijvlakken en de kubus 12 ribben. Van elk zijvlak van
de dodecaéder valt één van de diagonalen samen met een ribbe van
de kubus. Omdat elk zijvlak van de dodecaéder vijf diagonalen heeft,
zijn er vijf van zulke kubussen te onderkennen.

Met dank aan: Tomruen, CC BY-SA 4.0, via Wikimedia Commons.

De figuur maakt ook inzichtelijk dat een dodecaéder kan worden
gevormd door op elk zijvlak van een kubus een dakje te plaatsen.

31. De doorsnede van de twee tetraéders is een octaéder, waarvan
de hoekpunten op de middens van de zijvlakken van de kubus liggen.

Met dank aan: Birgit Lachner, CC BY-SA 3.0, via Wikimedia Commons.

Een octaéder bestaat uit twee piramides. De inhoud van een (wil-
lekeurige) piramide is gelijk aan % maal de oppervlakte van het grond-
vlak maal de hoogte. Heeft de kubus inhoud 1, dan heeft elk van beide

1.1.1_ 1

. . . _ 1 . . 1
piramides inhoud 3 - 5 - 5 = 75, dus de octaéder inhoud .
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31PS.  De doorsnede is een (onregelmatige) zeshoek, waarvan de drie
gegeven punten hoekpunten zijn en waarvan tegenoverliggende zijden
evenwijdig zijn. De figuur toont een ‘constructie zonder woorden’ om
eerst één van de drie onbekende hoekpunten te bepalen en daarna de
andere twee.

32. Een regelmatig veelvlak heeft Z zijvlakken (Z = 4,6,8,12,20)
en per zijvlak N zijden (of hoekpunten) (resp. N = 3,4,3,5,3). Een
bepaald zijvlak kan door Z draaiingen worden overgevoerd in alle
zijvlakken (met inbegrip van de identiteit die het lichaam ongemoeid
laat) en vervolgens gedraaid in N standen, waarna het lichaam weer
dezelfde ruimte inneemt als aan het begin. Dit zijn ZN draaiingen.
Daarbovenop kan elk van deze uitkomsten binnenstebuiten worden
gekeerd. Dit zijn ZN spiegelingen. Dus samen 2ZN symmetrieén.

Analoge betogen zijn er met H hoekpunten (H = 4,8,6,20,12)
en M ribben (of zijvlakken) per hoekpunt (resp. M = 3,3,4,3,5) en
dan 2HM symmetrieén, of met R ribben (R = 6,12,12,30,30) en
2 zijvlakken (of hoekpunten) per ribbe en dan 4R symmetrieén.

Dus een tetraéder heeft 24 symmetrieén, een kubus en een octaéder
hebben er 48, en een icosaéder en een dodecaéder 120, waarvan telkens
de helft draaiingen zijn en de helft spiegelingen.
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33. Kies, zonder verlies van algemeenheid, één van de zes kleuren
voor het bovenvlak van de kubus. Voor het ondervlak zijn er dan 5
mogelijke kleuren. Kies vervolgens, weer zonder verlies van algemeen-
heid, één van de overgebleven vier kleuren voor één van de vier zij-
vlakken. Voor het zijvlak ertegenover zijn er dan 3 mogelijke kleuren.
Voor het verdelen van de twee overgebleven kleuren over de twee
overgebleven zijvlakken zijn er 2 mogelijkheden. Het totaal aantal
mogelijkheden is 5 -3 - 2 = 30.

34. Het aantal mogelijkheden om n voorwerpen te rangschikken is
n-faculteit:

nl=n-(n—1)-(n—2)-...-2-1= ﬁk
k=1

Voorbeelden: 4! =1-2-3-4=24,5!=1-2-3-4-5=120,6! =5!-6 =
120 -6 = 720, 10! = I1}% , k = 3628 800.

35. Elke draaiing van de kubus geeft een permutatie van zijn vier
lichaamsdiagonalen. De vraag is of ze allemaal verschillend zijn. Elke
permutatie kan maar op één manier in zichzelf overgaan (naast de
identieke afbeelding, die alles op zijn plaats laat), namelijk door een
puntspiegeling in het centrum van de kubus. De puntspiegeling is niet
door draaiingen te verwezenlijken. Er zijn dus evenveel permutaties als
draaiingen, en dat zijn er 24 (de identieke afbeelding meegerekend);
Mark Ronan legt dit heel mooi uit in The Rotations of a Cube. Zie
ook oplossing 32.

36. Het genoemde verschil is een veelvoud van 3. Voor n willekeurige
gehele getallen ay,as,...,a, bestaat er een geheel getal b,, zodat:

(a1+a2+...+an)3—(a13+a23+...+an3):3bn.

Bewijs via volledige inductie:

— Voorn=11s by = 0.

— Vervolgens nemen we de stap van n naar n + 1:
(a1 + ...+ an+1)3 - (a13 + ...+ an+13)
=(a1+...+ an)3—|—3(a1 +...+ an)QanH +3(ar+...+an)ani1?+
ani1® — (1P + ...+ a,3) — aniq®
=3 (bn + (@ +...+ an)zanH +(ar+...+ an)an+12> =:3bpy1-
De aldus gedefinieerde b, 41 is geheel wanneer b,, geheel is.
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37. Analoog aan oplossing 36 (gebruik de driehoek van Pascal):

(a1 + a2)5 = a1® + a2’ + 5(a1tas + 2a13a2? + 2a1%a23 + ajasx?), en
(a1 + a2)7 = a1 +ay” + 7(a16a2 + 3a1%as? + 5ai1%as® + badast +
3a12a25 + a1a26).

38. De termen van de opgegeven som hebben allemaal dezelfde vorm:

1 1 1

n-n+1) n n+1

Zo uitgeschreven vallen alle termen behalve de eerste en de laatste
tegen elkaar weg (dit heet een telescopische som):

1 N 1 N 1 N 1
1-2 2-3 3.4 99 - 100

1 1+1 1+1 1+ +1 1_1 199
1 2 2 33 4 99 100 100 100°

(Merk op dat 1 als benadering net iets meer dan 1% afwijkt van de
exacte waarde.)

39. Deze uitspraak staat bekend als de Stelling van Wallace-Bolyai-
Gerwien. In de literatuur tref je bewijzen aan die op onderdelen uiteen-
lopen.

In de volgende stappen delen we eerst een veelhoek op in driehoe-
ken, zetten we vervolgens elke driehoek om in een rechthoek en daarna
elke rechthoek in een vierkant, en voegen we ten slotte alle vierkanten
samen tot één vierkant:

1. Deel de veelhoek op in driehoeken. Dit is altijd mogelijk door
een verticale lijn door elk hoekpunt te trekken; de veelhoek valt
70 uiteen in trapezia en driehoeken, en elk trapezium kan langs
een diagonaal worden gesplitst in twee driehoeken.
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2. Verdeel elke driehoek zodanig dat de stukken kunnen worden
herschikt tot een rechthoek met dezelfde oppervlakte.

3. De stap van rechthoek naar vierkant werkt alleen voor rechthoe-
ken waarvan de lange zijde hoogstens viermaal zo lang is als
de korte (oftewel hoogstens tweemaal zo lang als de wortel uit
de oppervlakte). Door vaak genoeg te halveren en te stapelen
kan elke rechthoek worden omgezet in een andere die hieraan
voldoet, met behoud van oppervlakte.

= =

4. Zet elke rechthoek om in een vierkant met dezelfde oppervlakte.

N

5. Voeg alle vierkanten stap voor stap, telkens per twee, samen tot
één enkel vierkant, met behoud van oppervlakte.

i @

Bovenstaande stappen uitgevoerd voor twee verschillende veelhoe-
ken van gelijke oppervlakte geven twee verschillende opdelingen van
een vierkant dat dezelfde oppervlakte heeft als de veelhoeken. Omge-
keerd kunnen de stukken van een even groot vierkant dat volgens beide
manieren is opgedeeld, worden herschikt tot elk van beide veelhoeken!
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40. Kopieén van het parallellogram in stroken tegen elkaar aan ge-
legd, met hun hoekpunten op de roosterpunten van het vel ruitjes-
papier, betegelen het vlak: alles is bedekt en alleen de zijden vallen
over elkaar heen. Immers, stel dat punten in de binnengebieden samen-
vallen, dan valt er ook een hoekpunt van het ene parallellogram op
een zijde of in het binnengebied van het andere, in tegenspraak met
het uitgangspunt.

Elk roosterpunt van het vel ruitjespapier is hoekpunt van vier
parallellogrammen, en natuurlijk ook van vier ruitjes. Dus komen
in elk roosterpunt vier ruitjes en vier parallellogrammen samen. Per
willekeurig deel van het vlak zijn er dus evenveel parallellogrammen
als ruitjes. Hieruit volgt dat het parallellogram dezelfde oppervlakte
heeft als een ruitje.

41. Een driehoek met de hoekpunten op roosterpunten van het vel
ruitjespapier en geen roosterpunten op de zijden of in het binnengebied,
heeft de oppervlakte van 1/2 ruitje. Immers, zo'n driehoek samen-
gevoegd met een omgedraaide kopie is een parallellogram zoals be-
schouwd in opgave 40.

Een parallellogram met a roosterpunten in het binnengebied en b
op de zijden, kan worden opgedeeld in zeg n van zulke driehoeken, en
heeft dan oppervlakte n/2.

De som van al hun hoeken is mn radialen.

Anderzijds bedraagt deze som 27wa + 7b + 2 4+ 2(7 — ), waarin
0 < a < 7/2 de scherpe hoek van het parallellogram is, of een rechte
hoek bij een rechthoek. Hierin zijn opgeteld de hoeken rond de a
inwendige roosterpunten, de gestrekte hoeken gevormd door de hoeken
die samenkomen bij de b roosterpunten op de zijden, en de vier hoeken
van het parallellogram.

Er volgt 7/2 = a+?b/2+1 voor de oppervlakte van het parallellogram.
Dit is een speciaal geval van de Stelling van Pick.

42. De afleiding voor een parallellepipedum in de ruimte, met a
roosterpunten in het inwendige, b op de zijvlakken en c op de ribben, is
analoog aan oplossingen 40 en 41. Uit de vergelijking voor de ruimte-
hoeken volgt voor de inhoud de uitdrukking a + b/2 4 ¢/4 + 1.
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43. Een gemeenschappelijke deler van twee gehele getallen is ook
een deler van hun verschil. In de Fibonacci-rij is elk getal het verschil
van zijn twee directe opvolgers, dus een gemene deler van twee opeen-
volgende getallen is ook een deler van hun directe voorganger. Terug-
gaand in de Fibonacci-rij volgt dus dat een gemene deler van a,2
en a1 ook een gemene deler is van a,4+1 en a,, en uiteindelijk ook
een deler is van a; = 1. Dus twee opeenvolgende Fibonacci-getallen
hebben geen andere deler gemeen dan 1. De grootste gemene deler
van de Fibonacci-getallen aigp en agg is dus 1.

44. We stellen voor c¢(n) een recursieve betrekking op. Nummer de
hoekpunten van de convexe n-hoek, n > 3, opvolgend als k =1,...,n.
Neem de zijde tussen de twee naast elkaar liggende hoekpunten 1 en
n als basis van een driehoek en laat de top ervan lopen over de andere
n — 2 hoekpunten k£ = 2,...,n — 1. Deze driehoek verdeelt de n-hoek
in drieén: de driehoek zelf, een k-hoek en een (n + 1 — k)-hoek. Zo
leiden we af:

n—1

c(n) = ng c(k)-c(n+1-k), c(2)=1.

Hieruit volgt: ¢(3) = 1, ¢(4) = 2, ¢(5) = 5, ¢(6) = 14, ¢(7) = 42,
c(8) = 132, ¢(9) = 429, ¢(10) = 1430.
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45. Bijn—1, n > 2, ploegen en de regel dat verliezers zonder meer

afvallen, Volstaat een schema met n—2 partijen om tot een winnaar te

komen. Er kan op 2n — 3 manieren een nde ploeg worden toegevoegd
aan een bestaand schema voor n — 1 ploegen:

— De nde ploeg speelt tegen de winnaar van de n — 1 ploegen. Dit is
1 mogelijkheid.

— De nde ploeg speelt tegen één van beide ploegen uit één van de
n — 2 partijen uit het schema voor n — 1 ploegen, en de winnaar
daarvan speelt tegen de andere ploeg uit die ene partij. Hiervoor
zijn er 2(n — 2) mogelijkheden.

Dus voor het aantal mogelijke schema’s s(n) voor n > 3 ploegen geldt

recursief:

s(n)=(2n—38)-s(n—1), s(2) = 1.

Hieruit volgt dat s(n) het product is van de eerste n—1 oneven getallen
1,3,5,7,.. -3

n n—1
s(n) =] (2k—3) = ] (2k—1).
k=2 k=1
Voor 9 partijen voor 10 ploegen zijn er s(10) = 1-3-5-...-17 =

34 459 425 verschillende schema’s.

46. Het aantal bomen van lijnstukken tussen n genummerde punten
is n"~2 en staat bekend als de formule van Cayley. Er bestaan vele
bewijzen, maar geen ervan is eenvoudig en kort. We verwijzen naar de

literatuur.
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47. In een ‘slang’ van de getallen 1,...,n, n > 2, zijn de getallen
op de oneven plaatsen relatieve minima en de getallen op de even
plaatsen relatieve maxima. Het absolute maximum n moet dus op een
even plaats staan, zeg xo; = n voor een zekere gehele 1 < j < /2 (met
dien verstande dat /2 niet geheel is voor oneven n). De overgebleven
getallen 1,...,n — 1 kunnen op (27;:11) = (::;j) manieren worden
verdeeld over de twee delen aan weerszijden van positie 25, die immers
lengten 25 — 1 en n — 25 hebben. Zo redenerend kunnen we voor het
aantal slangen s(n) van lengte n de volgende recursieve betrekking

opstellen:

n—1)! . .
s(n)= ¥ ety s —24) - s(2 — 1), s(0) = s(1) = 1.
1<j<n/2

Hieruit volgt: s(2) = 1, s(3) = 2, s(4) = 5, s(5) = 16, s(6) = 61,

s(7) = 272, s(8) = 1385, 5(9) = 7936, 5(10) = 50521.
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48. Beschouw de volgende functie uitgedrukt als reeks:
> 2k—1
f(.%‘) = k; S2k—1 h

We berekenen de afgeleide en, met gebruik van de uitdrukking voor
Sp, uit oplossing 47 voor n = 2k — 1, het kwadraat — hierbij is het zaak
nauwkeurig met de termen van de reeks te rekenen:

S p2k—2
f(x) =73 sop—1 (2k 5y = =1+ Z (;ik 21)' £2h=2

f2( )= Z Z (222111‘(553 11)1’ g2+ =2

00
= Z Z __S2i-182j-1 | 4.2k—2
- 2i—1)1(25—1)!

k=2 \i+j=k,12>1,5>1 (2i-D1(2j-1)

Z S2k—1-—25 S2j—1 2k—2
2k—1-25)!(2j—1)!
1<%k ( K¢ )!

We zien dat voor f(x) de differentiaalvergelijking f/(x) = 1 + f2(x)
opgaat, met beginvoorwaarde f(0) = 0.

De tangensfunctie voldoet hieraan: (tanz) = (sinzcos™!z)’
(cos?z 4 sin®2) cos™ 2z = 1 + tan® z, en tan0 = 0.

Omdat de oplossing van een beginwaardeprobleem uniek bepaald
is, geldt:

S p2k—1
f(z) =tanz = 3 sor_1 Ik
k=1
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49. Beschouw de functie:
S 22k
g(x) = > sax @Rt
k=0

We berekenen de afgeleide, en gebruiken de uitdrukking voor s, uit
oplossing 47 voor n = 2k en de uitdrukking voor tan z uit oplossing 48:

2k 1
82k (2k I

_ Z S2k—2j 8251 x?kfl
- (2k—27)! (25 —1)!
1<k

( > (2i§:(§22;:11)l> a?k ot

i+j=k,i20,j2>1

M8

g (x) =

x>
»—A

8

ol
Il
-

1018

k=1

52152_7 1 27 ,.25—1
. 201 (2)- eoei—y T

Il
A ”M8
Mg

0j=
x) - tan .

We zien dat voor g(z) de differentiaalvergelijking ¢'(x) = g(z) - tanz
opgaat, met beginvoorwaarde g(0) = 1 (met 0° = 1).

De omgekeerde cosinusfunctie voldoet: (cos™! z)’ = sinzcos™? x =
tanzcos™ !z, en cosT1 0 = 1.

Omdat de oplossing van een beginwaardeprobleem uniek bepaald

is, geldt:

‘Zk
g(z) =cos™la = kZO Sok (2k)'

De reeksen f en g opgeteld:

o0
> ospdr =tanz +cos =T )y <p <)y,
k=0
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50. De priemgetallen vormen een oneindige rij {py},-,. Aangezien
pr > lens > 1,is 0 < == < 1, en is volgens de formule voor

PK?®
meetkundige reeksen:
1 =) l
_ 1
Pr® =
Hiermee leiden we af:
H 1_%: H 1— 1 = Epkls
p=2 " P k=1 Pk k=11=0
o1 o 1
= Il 5== 2 =
V{ar}32, €NgN k=1 n=1

De voorlaatste som loopt over alle oneindige rijen {aj};-; van niet-
negatieve gehele getallen. De laatste gelijkheid geldt omdat met alle
mogelijke producten van de priemgetallen (en pp® = 1) precies alle
natuurlijke getallen worden gevormd.

51. Deze opgave staat bekend als het Bazel-probleem. De oplossing
o0

is 21 & = %2 ~ 3, de waarde voor s = 2 van de Riemann-zéta-
n=

functie ((s) = > L. Euler bewees dit als eerste. Er bestaan vele

n=1
bewijzen, maar geen ervan is eenvoudig en kort. We verwijzen naar de

literatuur.
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52. Een breuk kan niet worden vereenvoudigd als teller en noemer
geen delers gemeen hebben, met andere woorden als ze onderling
ondeelbaar oftewel relatief priem zijn. Twee gehele getallen zijn relatief
priem precies dan als ze geen enkel priemgetal pg, k = 1,2,..., als
gemene deler hebben.

De kans dat een willekeurig geheel getal deelbaar is door een
bepaald priemgetal p is 1/p, want ieder rijtje van p opeenvolgende
gehele getallen bevat precies 1 veelvoud van p.

De kans dat twee willekeurige gehele getallen een bepaald priem-
getal p als gemene deler hebben is dus !/p?, en dus is kans dat ze niet
beide deelbaar zijn door p gelijk aan 1 — 1/p2.

De kans dat ze geen enkele priemfactor gemeen hebben is daarom:

T )

Met oplossingen 50 en 51 leiden we af dat dit product de waarde
6/x2 = 2/3 heeft:

e 1 . 1 - = 1 -
H ( _ka) = H - 1 = H R —
k=1 k=1 pr? k=1 »x?

53. De Fibonacci-getallen zijn: a1 = as = 1, an+2 = aps1 + apn
voor n > 1. Delen door a,y; geeft a”ﬁ =1+ %= o . Aannemende

dat de limiet ¢ = lim a"“ bestaat (eigenlijk moet dat eerst worden
n—00

bewezen), voldoet ¢ aan d) =1+ 1/4 oftewel aan ¢? — ¢ — 1 = 0. Deze
1+2\/g’ het

kwadratische vergelijking heeft als positieve oplossing ¢ =
getal dat bekend staat als de ‘gulden snede’.

54. Aannemende dat de limiet bestaat (eigenlijk moet dat eerst
worden bewezen), voldoet deze limiet ¢ aan ¢ = 14 ﬁ oftewel aan

20?2 — 2¢p — 1 = 0. Deze kwadratische vergelijking heeft als positieve
oplossing ¢ = #
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55. Definieer P,(x) = cos(narccosz), |z| < 1, n > 0. Raadpleeg in
een tabel van goniometrische gelijkheden de product-naar-som identi-
teiten (ook de Werner-, (omgekeerde) Simpson- of ‘prosthaphaeresis’
regels genoemd). De functies P, zijn veeltermen:

Py(z) = cos0 =1,
Py (x) = cos(arccosx) = x,
PQ(LIJ)

cos(2arccos x) = 2 cos?(arccosx) — 1 = 227 — 1,

P, (x) = cos(narccos z) = cos((n — 1) arccos x + arccos z)
= 2 cos(arccos x) cos((n — 1) arccos x) — cos((n — 2) arccos )
=22P,_1(x) — Pp_a(x).

Ps(z) =
P4(33) =

xPy(z) — Py (z) = 42® — 3z,
xP3(z) — Py(z) = 8z — 8% + 1.

NN

56. Een nde eenheidswortel is een getal z dat verheven tot de nde
macht 1 oplevert: 2™ = 1. De theorie van de complexe getallen leert
dat er n zijn: z = 1,a,02,...,a" ', met @ = e*/". Er geldt a” = 1.
We onderzoeken de machten van a. Voor p =qn+1r, 0 < r < n, is
aP = ot = (a™)%a” = o, dus de pde macht van « is gelijk aan 1
precies dan als p een veelvoud is van n. Gevraagd is de som van de
kde machten van de n nde eenheidswortels:

— Als k een veelvoud is van n, dan zijn de kde machten van de nde
eenheidswortels, die op hun beurt machten van « zijn, alle n gelijk
aan 1 en is hun som dus gelijk aan n.

— Als k geen veelvoud is van n, dan is de gevraagde som een partiéle

som van de meetkundige rij met reden o # 1: 1¥ +a* —i—(on)]C +ot

n— _ ak n —(a™ k
(@) = 1ok 4 (0h) 4o+ (o) = L = B <o

26



57. Zie hieronder links de kromme ¢ — (cos 2t,sin 3t), en rechts de
kromme t + (£ — 3t,t* — 2t2).

5 2 4 =% o 1 5 2
05
1

58. Met de complexe exponentiéle functie en het binomium wvan
Newton geldt:

100 —k)ix k —kix

= 5 (R0 e
1@ 00 (100—2k)ia

= 5100 2( )- (=) e :

Nemen we de integraal fo , dan blijft in het rechterlid, na verwisseling

van [ en ), alleen de middelste term (k = 50) over ( 027T e dx = 0
voor n # 0). Dus:

27 50 27
oo (=1)® (100 o 100!
/O S T dr = 2100 < 50 e dxr = W

27'rn

Met de formule van Stirling, n! ~ , volgt:

10007 21001 - (¢2)* m . \ﬁ \[
299 . 5012 " 9100 . (5050) . 100 . (\/m

Dus:
27 1
sin'® pdr ~ =.
0 2
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59. We halen logaritmisch afleiden van stal: (In f(z)) = ((j)), dus
f'(z) = f(z)(In f(x))’, waarbij ' differentiatie naar x aangeeft. Aldus
(%) =2®(Inz*) = 2% (zlnx) = 2%(1 - lnx —+—m z) = 2%(1 4+ Inx).

Neem de integraal f1 Het linkerlid is f Y dr =101 -1 ~ 100,
Het rechterlid is fl “(14+1Inz)dr ~ (1+In 10 f1 z* dx, omdat z*

zich op 1 < 2 < 10 in de omgeving van = 10 concentreert (zie
hieronder de grafiek van de afbeelding x +— x"”) en Inx daar niet sterk

varieert (2405128 ~ 0,097). Er volgt fllo % dx ~ % ~3-10°.

1.2E10

11E10

1E10

9E9

8E9

7€9

6E9

5E9

4E9

3E9

269

1E9
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60. De drie grootcirkels die de driehoek met hoeken (o, 8, 7) bepalen,
verdelen het boloppervlak in acht stukken: naast de driehoek zelf zijn
dat een identieke, diametraal gelegen driehoek, en nog zes partjes
(stukken bolschil bepaald door twee halve grootcirkels tussen twee
diametraal gelegen punten op de bol) met één tip afgeknot door één
van beide driehoeken (teken dit op een sinaasappel!).

De oppervlakte van de bol met straal 1 is 47. De oppervlakte van
een partje van hoek ¢ is (¢/27) - 4 = 2¢ en van een afgeknot partje
2¢ — S, waarin S de oppervlakte van de driehoek is. Voor gegeven
(a, B,7) volgt S uit het gelijkstellen van de acht genoemde stukken
aan de bolschil: S +5+ (2a—5)+ 2a—8)+(26-5)+(26-95) +
(2y—=5) + (2y — S) = 4m, waaruit volgt S =a+ 8+~ — 7.

61. Een willekeurig punt P op de rollende kleine cirkel dat op een
bepaald moment de grote cirkel raakt, raakt na één omwenteling de
grote cirkel opnieuw. De booglengte langs de grote cirkel tussen de
twee raakpunten is gelijk aan de omtrek r = 1/n van de kleine cirkel.
De omtrek van de grote cirkel is 1/r = n maal de omtrek van de kleine.
De baan van het punt P bestaat dus uit n bogen. In het geval dat
r = 1/2, beweegt P heen en weer over een middellijn van de grote
cirkel.
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62. De kans dat in een klas van n leerlingen er twee op dezelfde dag
jarig zijn is uiteraard 0 voor n = 1 en 1 voor n > 365 (schrikkeljaren
en verjaardagen op 29 februari laten we buiten beschouwing). Het
aantal mogelijke verdelingen van n verjaardagen over het jaar is 365",
en zonder samenvallende verjaardagen 365-364-...-(365—n+1). We
nemen aan dat de ene dag niet populairder is als verjaardag dan de
andere. De kans op geen samenvallende verjaardagen is dus:
"= 365k

Dn = 365
k=0

Deze kansen zijn achtereenvolgens te berekenen via:

— 1
p1=1, pn:pn_y%voongngi%G&

De kans op samenvallende verjaardagen in een klas van n leerlingen is
gelijk aan 1 — p,; deze is hieronder uitgezet in een grafiek. Het blijkt
dat pag & 1/2, dus ng = 23. In een klas van 30 leerlingen is de kans op
twee jarigen op één dag al 1 — p3g =~ 0,7.

kans op samenvallende verjaardagen

1,0 e

0 10 20 30 40 50 60 70 80

n, aantal leerlingen in klas
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63. De brekingsindex n(y) bereikt een maximum op een zekere hoog-
te y = y.. Een lichtstraal die op een voorwerp weerkaatst in een punt
met y = yg niet te ver van y, vandaan en onder een uitgaande hoek
a = o met de verticaal, voldoet aan n(y) sin o = n(yo) sin ayp.

Omdat 0 < a < wen dus 0 < sina < 1, loopt de lichtstraal binnen
de horizontale strook overeenkomend met n(yp) sin ag < n(y) < n(y).
Neemt n(y) af, dan neemt sin « toe, dus neigt o naar 7/2. We conclu-
deren dat de lichtstraal golft in een strook rond y = y,., met langere
golven naarmate «q dichter bij 7/2 ligt; voor ap = 7/2 is de lichtstraal
recht.

(Een waarnemer vormt zich een beeld van het voorwerp op basis
van de lichtstralen die in zijn oog vallen, en wel op basis van de
richtingen waaronder die golvende lichtstralen invallen. Omdat die
golven verschillende golflengten kunnen hebben, kan de verticale on-
derlinge ligging van twee lichtstralen uit twee verschillende punten van
het voorwerp bij aankomst in het oog zijn omgekeerd. Het voorwerp
lijkt dan ondersteboven te staan.)
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64. Dit vraagstuk staat bekend als het probleem van Fagnano. We
gebruiken een natuurkundig argument, en nemen voor de gegeven
driehoek ABC (met hoeken «, 3,~ en zijden met lengten k, [, m) een
gladde ijzerdraad en voor de gezochte driehoek K LM (met hoeken
K, A, 1) een elastiek. Het elastiek neemt vanzelf de minimale lengte aan.
Omdat de spankracht in het elastiek in rust overal dezelfde waarde
heeft, zijn in elk hoekpunt van K LM de hoeken tussen zijn zijden
en de betreffende zijde van ABC gelijk (anders zou het elastiek nog
verschuiven totdat de krachten in de punten K, L, M in evenwicht
zijn), oftewel de hoekdeellijnen van x, A, u staan loodrecht op de zijden
van ABC.

Eerst berekenen we de hoeken en zijden van de driehoeken AK M,
BKL, CLM. Omdat de hoeken per driehoek optellen tot 7 radialen,
geldt het stelsel vergelijkingen « + 1/2(w — k) + Y/2(m — ) = 7, B+
Ya(m — k) +12(m — X) = m, v+ Y2(m — A) + Y/2(m — p) = 7. Dit heeft
als oplossing k =a+8—v, A=—-a+ 8+, u=a—F+~. Omdat
ook a+fB+y=m volgt k=7 -2y, \ =7 —2a, u =7 —26. En
hieruit volgt weer dat AK M, BK L, CLM gelijkvormig zijn met ABC,
met schaalfactoren resp. 0 < u,v,w < 1 waarmee de lengten van hun
zijden kunnen worden uitgedrukt ten opzichte van k,l, m. Voor de
lengten van de zijden geldt k = um + vl, | = vk +wm, m = uk + wl,
met oplossing u = & Jg’,?m_lz, v = kz‘*éjd m? , W= M

Beschouw nu de loodrechte projectie P van het hoekpunt C op de
zijde AB, op afstand p van A en ¢ van C. Toepassen van de stelling van
Pythagoras op ACP en op BCP, dus p*+¢* = m? en (k—p)?+¢* = I?,
geeft p = % We zien dat p = um, en dat dus K = P. En
analoog voor de twee andere hoekpunten.

Dus de hoekdeellijnen van x, A, u staan loodrecht op de zijden van
ABC en gaan door zijn hoekpunten, en zijn dus zijn hoogtelijnen. We
concluderen dat K LM de voetpuntsdriehoek van het hoogtepunt van
ABC is; zijn omtrek bedraagt ul + vm + wk.
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65. In oplossing 26 hebben we gezien dat een strookje van een bol-
schil en de projectie ervan op de cylindermantel die de bol omvat
dezelfde opppervlakte hebben. Daaruit volgt dat plakjes van de bol-
schil van gelijke hoogte gelijke oppervlakte hebben. Het gemiddelde
van een functie op een bol die per breedtecirkel constant is, is daarom
gelijk aan het gemiddelde van die functie over de breedtecirkels.

Voor de gegeven bol met straal R en middelpunt (X,Y, Z) passen
we dit nu toe, waarbij de rechte lijn door de oorsprong (0,0, 0) en het
punt (X, Y, Z) de as van onze beschouwing vormt. De uitdrukking 1/r,
waarin r de afstand tot de oorsprong is, wordt als functie over de
breedtecirkels gegeven door:

r(h) =/(p+h)2+R2 —h?=\/R2+ p? +2ph, ~-R < h <R,

met p =r(X,Y, 2).
Merk op dat:

Hieruit volgt voor het gevraagde gemiddelde op de bol:

<r> - /R dh —M{p/ir'(h)dhzQJEP(T(R)—T(—R))

We onderscheiden het geval dat de oorsprong buiten de bol ligt, R < p:

s Pt R=(p—R)) =

b\'—‘

2R
het geval dat de oorsprong binnen de bol ligt, p < R:

1

o (p+ R— (R*p))zﬁ,

2Rp

en het geval dat de oorsprong op de bol ligt, p = R:

lim / dh = —l
.._GLOQR R+e o _R
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66. In oplossingen 66 t/m 70 rekenen we met logaritmen. Reken-
regels zijn: log, g = 1, log, ¢* = b, log,a® = blog, a, log,(a - b) =
log, a +log, b, log, 7 = log, a — log, b.

Er geldt 10log;,2 = log;,2'° = log;, 1024 ~ log;, 103 = 3, dus
log,, 2 ~ 0,3 is een grove benadering.
Exact geldt 10log;,2 = log,,2'° = log,, 1024 = log,,(10% - 1,024) =
logyo 10% + log; 1,024 = 3 + logy 1,024, dus:

3 1
logig2=—+—1

1,024.
10 10 0819 aO

We zoeken een schatting log;, 1,024 ~ 1/n, voor een natuurlijk getal n.
Dit betekent 10”/™ & 1,024 oftewel 1,024" ~ 10. We kunnen uitrekenen
dat 1,024°7 ~ 9,979 en 1,024% =~ 10,219. Met log,, 1,024 ~ 1/97 ~
0,01031 is een betere benadering log;,2 ~ 0,301.

67. We gebruiken de benadering log;, 2 ~ 0,301 uit oplossing 66.
log,, 4 = log;, 2% = 2log;, 2 ~ 0,602

log;, 8 = log;, 2% = 3log;, 2 ~ 0,903

log 5 = logyy 22 = logy, 10 — log;, 2 &~ 1 — 0,301 = 0,699

log; 50 = log,4(10 - 5) = logy 10 + logyo 5 ~ 1 + 0,699 = 1,699
log; 32 = log;( 2° = 5log;, 2 ~ 1,505

log,, 128 = log;, 27 = Tlog;o 2 ~ 2,107

log,, 125 = log;, 5% = 3log;o 5 ~ 2,097

log;, 64 = log; 2% = 6log;, 2 ~ 1,806

68. Er geldt dat 2log,,7 = log,, 7> = log;;49 = log;, 50, dus
log, 7 =~ %loglo 50. In oplossing 67 zagen we dat log;, 50 ~ 1,699.
Dus log,, 7 = 0,850.

69. Er geldt logq9+1log;, 7 = log;,(9-7) = log;, 63 ~ log;, 64. We
zagen log;,64 ~ 1,806 en log,, 7 ~ 0,850, in respectievelijk oplossin-
gen 67 en 68. Er volgt log,,9 =~ log;,64 — log;, 7 ~ 0,956. We
gebruiken ook de benadering log;, 2 ~ 0,301 uit oplossing 66.

logo 3 = logyy V9 = 3log;, 9 ~ 0,478

log, 27 = log; 3% = 3log;, 3 ~ 1,434

log;, 6 = log;((2 - 3) =logy2 + logyg 3 =~ 0,779

log;, 12 = log; (2% - 3) = 2log;, 2 + log;, 3 ~ 1,080
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70. Neem twee natuurlijke getallen m en n die ongeveer even groot
zijn: =1+ """~ len 0 < |7 < 1.

Er geldt log;, 7 = log,qm — logq n.

Met de gegeven betrekking en de lineaire benadering geldt ook

logyo 7 = logy( ) = g (1 PR & ().
Er volgt:
m-—n
n(logygm — logygn) .

Verder geldt met de gegeven betrekking en Ine = log, e = 1:

In10 =

1 _ Ine _ 1
%810 = 1170 T 10’

Voor m = 1024, n = 1000, en met de benadering log;, 1,024 ~ /97
uit oplossing 66, volgt: In 10 ~ 2,328 en log,, e ~ 0,430.
[Als we een getal y benaderen met een product van steunpunten y;
met bekende log;qy;, ¢ = 1,...,n,dan is y = (1 4+ z) [[ y; voor een
i=1
zekere kleine x, en:

log,, y = logyg ((1 +x) 1:[1 yi>

3

= Z logy yi + logo(1 + )

3

In(1
- Z: IOglo Yi + nl(n ;FOI’)

S

£2 xT 1‘4
zZlofvrloyl"‘lmo (x_i"‘?_f‘*‘"')-]

i=1
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71. We gebruiken de FEquidistributiestelling van Weyl: Voor elk ir-
rationaal getal « zijn de decimale delen van de getallen a, 2« 3, . ..
gelijkmatig verdeeld over het interval tussen 0 en 1; het percentage van
deze decimale delen op een willekeurig deelinterval is evenredig aan
de lengte ervan. Het bewijs is niet eenvoudig en kort. We verwijzen
naar de literatuur.

Dat een reéel getal x > 1 begint met het cijfer k, k = 1,2,...,9,
betekent:
E-10" <z < (k+1) 107,

voor een zeker geheel getal n > 0. Om de machten te kunnen hanteren,
nemen we hun logaritmen. Daarvoor gelden dezelfde ongelijkheden,
daar de logaritme een strikt monotoon stijgende functie is. Dus:

0 < logyo k <logigx —n <logyg(k+1) <1,

oftewel het decimale deel van het getal log,, z ligt tussen log;, k en
log,o(k + 1). De getallen log,, k verdelen het interval van 0 tot 1 in
negen deelintervallen:

0=1log;y1 <log,;2 <...<logy9 <log;y10 = 1.

Laat nu x over de machten van 2 lopen, dus = = 2™, m > 0 geheel,
en log,yx = log;, 2™ = mlog,, 2. Toepassing van de Equidistributie-
stelling van Weyl met o = log,, 2 (is irrationaal, want log;; 2 = ¢ zou
betekenen dat 2% = 10° = 2°-5°, strijdig met de eenduidigheid van de
priemfactorontbinding) leidt tot de conclusie dat de kans pj, dat een
macht van 2 met het cijfer & begint, gelijk is aan:

1
pr = logyo(k 4 1) —logyo k = logy, (1 + k;) ;

dus p1 = 0,301, po =~ 0,176, ps ~ 0,125, ps =~ 0,097, ps ~ 0,079,
pg ~ 0,067, pr = 0,058, pg = 0,051, pg =~ 0,046, en vanzelfsprekend is
22:1171@ =1.

72. Analoog aan oplossing 71 (bedenk dat ook log;, 3 irrationaal is,
immers log;y 3 = 7 zou betekenen dat 3¢ = 20 . 5 wat onmogelijk
is).
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73. Wat hier staat is dat hoe vaak de afbeelding g ook wordt toe-
gepast, er altijd een punt x in U is dat weer in U terugkeert.

Beschouw de oneindige rij beelden ¢/ (U), 7 > 0, van U. Omdat
de omgeving U een oppervlakte groter dan 0 heeft en g oppervlakte-
bewarend is, overlappen sommige ¢’V (U). Zonder overlap zou hun
gezamenlijke oppervlakte immers oneindig zijn, terwijl M begrensd
is. Er zijn dus zekere k en [, 0 < k < [, waarvoor g*V(U) en ¢"V (U)
overlappen. Neem een punt z in hun doorsnede. Hiervoor bestaan
punten z en y in U zodat ¢'V (z) = ¢"*V(y) = 2. Omdat g injectief is,
kunnen we kN keer teruggaan. Dan volgt g(l_k)N(x) = y. Dus er is
een x in U waarvoor g7 (x), T = (I — k)N > N, weer in U ligt.

74. Eerst bewijzen we dat de afbeelding g(a, 8) = (a + 1,8 + V/2)
(mod 27) geen periodieke punten heeft. Het verschil tussen twee ite-
raties g7 (o, B) en g7t (a,B), T > 0 en t > 1, van een punt (a, 3)
is gelijk aan (¢,tv/2) (mod 27). Dit is nooit gelijk aan (0,0), (0,.) of
(.,0), want gehele veelvouden van 1, V2 en 7 zijn opgeteld nooit gelijk
aan 0 (1 is geheel, v/2 irrationaal en algebraisch, en 7 transcendent).
Dus iteraties vallen niet samen, en liggen ook niet recht naast of onder
elkaar.

De afbeelding g is eenvoudigweg een verschuiving, dus het volstaat
de dichtheid te bewijzen van de rij iteraties van één bepaald beginpunt,
zeg (0,0). Omdat de punten van de rij {g?(0,0)}, T > 0, allen verschil-
lend zijn en de torus een eindige oppervlakte heeft, zijn er g™ (0,0)
en gM*+N(0,0), met zekere M > 0 en N > 1, die willekeurig dicht
bij elkaar liggen. Daar g een verschuiving is, liggen de punten van de
deelrij {g™V7(0,0)} op onderling gelijke, willekeurig kleine afstanden

op een lijn die zich om de torus windt met helling A = ﬁ—g = %,

voor zekere K, L > 0. Merk op dat 0 < |A| < 0o, en dat A irrationaal
is, want p(Nv/2—2Ln) = q(N —2K) heeft geen oplossing voor gehele
pen q.

Deze lijn snijdt («,0), 0 < a < 27, in (27\j,0) (mod 27), j = 0.
Analoog aan het bovenstaande kan worden beredeneerd dat de ite-
raties A3 (0) = 2wAj (mod 27), j > 0, van de verschuiving hy(a) =
a+27A (mod 27) allen verschillend zijn (want gehele veelvouden van 1
en het irrationale getal A\ zijn opgeteld nooit gelijk aan 0) en er een
deelrij is met onderling gelijke, willekeurig kleine afstanden; dit is de
Stelling van Jacobi. De lijn windt zich dus dicht om de torus.

Samenvattend zien we dat de deelrij {g™V7(0,0)} en daarmee de
rij {g7(0,0)} dicht ligt in de torus.
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75. De afbeelding g(a, 8) = (2a+ 8,a+ 8) (mod 27) staat bekend
als Arnold’s CAT map (Continu Automorfisme van de Torus) of als
Arnold’s cat map (Arnold gebruikte ter illustratie een tekening van
een kattengezicht) of ook wel als Thom map.

Beschouw de punten op de torus geént op de gelijknamige breuken
tussen 0 en 1 met een bepaalde noemer n: © = (o, 8) = (27T c 2T %),
0 < a,b < n. Omdat g een lineaire afbeelding is met geheeltallige
coéfficienten, zijn alle iteraties ¢7(x), j > 0, van deze vorm. Omdat
er precies n® van deze punten zijn, bestaan er voor elke x onder
de eerste n? + 1 iteraties twee samenvallende: gV @) (z) = g™ @) (z),
0 < M(x) < N(z) < n? De afbeelding g heeft een inverse, te weten
g (a, B) = (a—fB, —a+20). Teruggaan via g~ M®) geeft ¢7 ) (z) = ,
T(x) = N(x) — M(z), dus x is een periodiek punt van de afbeelding g¢
met periode 0 < T'(z) < n?.

We zien dat alle x periodieke punten van g zijn. Loopt n over
de natuurlijke getallen, dan bestrijken de breuken met noemer n in
de definitie van x alle rationale getallen tussen 0 en 1. Zoals bekend
liggen de rationale getallen dicht in de reéle getallen. Alle aangeduide
periodieke punten samen liggen bijgevolg dicht in de torus.

76. 777

7T, M7
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